References
- Ahmed, M.J. (2016), "Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review", J. Environ. Chem. Eng., 4(1), 89-99. https://doi.org/10.1016/j.jece.2015.10.027
- Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R. and Rafatullah, M. (2015), "Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater", RSC Adv., 5(39), 30801-30818. https://doi.org/10.1039/C4RA16959J
- Amini, M., Arami, M., Mahmoodi, N.M. and Akbari, A. (2011), "Dye removal from colored textile wastewater using acrylic grafted nanomembrane", Desalination, 267(1), 107-113. https://doi.org/10.1016/j.desal.2010.09.014
- Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pa, A., Alcaina-Miranda, M.I. and Dhahbi, M. (2012), "Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes", Desalination, 297, 87-96. https://doi.org/10.1016/j.desal.2012.04.022
- Banat, F. and Al-Bastaki, N. (2004), "Treating dye wastewater by an integrated process of adsorption using activated carbon and ultrafiltration", Desalination, 170(1), 69-75. https://doi.org/10.1016/j.desal.2004.02.093
- Bhatt, D.R., Maheria, K.C. and Parikh, J. (2015), "Enhanced separation of toxic Blue BG dye by cloud point extraction with IL as an additive: Effect of parameters, solubilization isotherm and evaluation of thermodynamics and design parameters", J. Environ. Chem. Eng., 3(2), 1365-1371. https://doi.org/10.1016/j.jece.2014.11.031
- Blatt, W.F. and David, A. (1970), Membrane Science & Technology, (J.E. Flynn Ed.), New York, NY, USA, pp. 47-97.
- Choi, W., Bae, H., Ingole, P.G., Lee, H.K., Kwak, S.J., Jeong, N.J., Park, S.C., Kim, J.H., Lee, J. and Park, C.H. (2015), "Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production", Membr. Water Treat., Int. J., 6(2), 113-126. https://doi.org/10.12989/mwt.2015.6.2.113
- Demirbas, A. (2009), "Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review", J. Hazard. Mater., 167(1-3), 1-9. https://doi.org/10.1016/j.jhazmat.2008.12.114
- Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. and Sanchez-Polo, M. (2007), "Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review", J. Environ. Managem., 85(4), 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
- El Qada, E.N., Allen, S.J. and Walker, G.M. (2007), "Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal", Ind. Eng. Chem. Res., 46(14), 4764-4771. https://doi.org/10.1021/ie0701165
- Esfandiari, A., Kaghazchi, T. and Soleimani, M. (2012), "Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes", J. Taiwan Inst. Chem. Eng., 43(4), 631-637. https://doi.org/10.1016/j.jtice.2012.02.002
- Georgin, J., Dotto, G.L., Mazutti, M.A. and Foletto, E.L. (2016), "Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions", J. Environ. Chem. Eng., 4(1), 266-275. https://doi.org/10.1016/j.jece.2015.11.018
- Hagmeyer, G. and Gimbel, R. (1999), "Modelling the rejection of nanofiltration membranes using zeta potential measurements", Sep. Purif. Technol., 15(1), 19-30. https://doi.org/10.1016/S1383-5866(98)00050-1
- Han, M.J. and Nam, S.T. (2002), "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202(1-2), 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9
- Heibati, B., Rodriguez-Couto, S., Amrane, A., Rafatullah, M., Hawari, A. and Al-Ghouti, M.A. (2014), "Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms", J. Ind. Eng. Chem., 20(5), 2939-2947. https://doi.org/10.1016/j.jiec.2013.10.063
- Higuchi, A., Hara, M., Horiuchi, T. and Nakagawa, T. (1994), "Optical resolution of amino acids by ultrafiltration membranes containing serum albumin", J. Membr. Sci., 93(2), 157-164. https://doi.org/10.1016/0376-7388(94)80004-9
- Huang, J. and Zhang, K. (2011), "The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination", Desalination, 282, 19-26. https://doi.org/10.1016/j.desal.2011.09.045
- Ingole, P.G. and Ingole, N.P. (2014), "Methods for separation of organic and pharmaceutical compounds by different polymer materials", Korean J. Chem. Eng., 31(12), 2109-2123. https://doi.org/10.1007/s11814-014-0284-z
- Ingole, P.G., Bajaj, H.C. and Singh, K. (2012), "Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane", Desalination, 305, 54-63. https://doi.org/10.1016/j.desal.2012.08.015
- Ingole, P.G., Bajaj, H.C. and Singh, K. (2013a), "Preparation and performance evaluation of enantioselective polymer composite materials", RSC Advances, 3(11), 3667-3676. https://doi.org/10.1039/c2ra21787b
- Ingole, P.G., Bajaj, H.C. and Singh, K. (2013b), "Synthesis of solid enantioselective macromer of trimesic acid for the enantiomeric separation of chiral alcohols", Adv. Mater. Res., 2(1), 51-64. https://doi.org/10.12989/amr.2013.2.1.051
- Ingole, P.G., Bajaj, H.C. and Singh, K. (2014a), "Membrane separation processes: Optical resolution of lysine and asparagine amino acids", Desalination, 343, 75-81. https://doi.org/10.1016/j.desal.2013.10.009
- Ingole, P.G., Choi, W., Kim, K.H., Park, C.H., Choi, W.K. and Lee, H.K. (2014b), "Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation", Chem. Eng. J., 243, 137-146. https://doi.org/10.1016/j.cej.2013.12.094
- Jain, R. and Sikarwar, S. (2008), "Removal of hazardous dye Congo red from waste material", J. Hazard. Mater., 152(3), 942-948. https://doi.org/10.1016/j.jhazmat.2007.07.070
- Johns, M.M., Marshall, W.E. and Toles, C.A. (1999), "The effect of activation method on the properties of pecan shell-activated carbons", J. Chem. Technol. Biotechnol., 74(11), 1037-1044. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1037::AID-JCTB160>3.0.CO;2-O
- Kim, J.H. and Lee, K.H. (1998), "Effect of PEG additive on membrane formation by phase inversion", J. Membr. Sci., 138(2), 153-163. https://doi.org/10.1016/S0376-7388(97)00224-X
- Kondru, A.K., Kumar, P. and Chand, S. (2009), "Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst", J. Hazard. Mater., 166(1), 342-347. https://doi.org/10.1016/j.jhazmat.2008.11.042
- Lee, J.W., Choi, S.P., Thiruvenkatachari, R., Shim, W.G. and Moon, H. (2006), "Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes", Dyes Pigm., 69(3), 196-203. https://doi.org/10.1016/j.dyepig.2005.03.008
- Li, J., Vergne, M.J., Mowles, E.D., Zhong, W.H., Hercules, D.M. and Lukehart, C.M. (2005), "Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs)", Carbon., 43(14), 2883-2893. https://doi.org/10.1016/j.carbon.2005.06.003
- Liu, Y., Koops, G.H. and Strathmann, H. (2003), "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the solution and bore liquid solution", J. Membr. Sci., 223(1-2), 187-199. https://doi.org/10.1016/S0376-7388(03)00322-3
- Malik, R., Ramteke, D.S. and Wate, S.R. (2007), "Adsorption of malachite green on groundnut shell waste based powdered activated carbon", Waste Manage., 27(9), 1129-1138. https://doi.org/10.1016/j.wasman.2006.06.009
- Maurya, S.K., Parashuram, K., Singh, P.S., Ray, P. and Reddy, A.V.R. (2012), "Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aqueous dye solutions", Desalination, 304, 11-19. https://doi.org/10.1016/j.desal.2012.07.045
- Mohan, D., Singh, K.P., Singh, G. and Kumar, K. (2002), "Removal of dyes from wastewater using fly ash, a low-cost adsorbent", Ind. Eng. Chem. Res., 41(15), 3688-3695. https://doi.org/10.1021/ie010667+
- Mui, E.L.K., Cheung, W.H., Valix, M. and McKay, G. (2010), "Mesoporous activated carbon from waste tyre rubber for dye removal from effluents", Micro. Meso. Mater., 130(1-3), 287-294. https://doi.org/10.1016/j.micromeso.2009.11.022
- Mulder, M. (1997), Basic Principles of Membrane Technology, Kluwer Academic Publishers, pp. 123-129.
- Panda, S.R. and De, S. (2013), "Role of polyethylene glycol with different solvents for tailor-made polysulfone membranes", J. Polym. Res., 20(7), 179-195. https://doi.org/10.1007/s10965-013-0179-4
- Pandit, P. and Basu, S. (2004), "Dye and solvent recovery in solvent extraction using reverse micelles for the removal of ionic dyes", Ind. Eng. Chem. Res., 43(24), 7861-7864. https://doi.org/10.1021/ie0402160
- Purkait, M.K., Maiti, A., DasGupta, S. and De, S. (2007), "Removal of Congo red using activated carbon and its regeneration", J. Hazard. Mater. 145(1-2), 287-295. https://doi.org/10.1016/j.jhazmat.2006.11.021
- Rafatullah, M., Ahmad, T., Ghazali, A., Sulaiman, O., Danish, M. and Hashim, R. (2013), "Oil Palm Biomass as a Precursor of Activated Carbons: A Review", Critical Rev. Environ. Sci. Technol., 43(11), 1117-1161. https://doi.org/10.1080/10934529.2011.627039
- Rambabu, N., Azargohar, R., Dalai, A.K. and Adjaye, J. (2013), "Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications", Fuel Process. Technol., 106, 501-510. https://doi.org/10.1016/j.fuproc.2012.09.019
- Reinholdt, M.X., Kaliaguine, S. and Che, R. (2011), "Silicalite-1/SPEEK composite membranes: influence of the zeolite particles loading or size on proton conductivity and water uptake", New J. Chem., 35(11), 2573-2583. https://doi.org/10.1039/c1nj20020h
- Rivera-Utrilla, J., Sanchez-Polo, M., Gomez-Serrano, V., Alvarez, P.M., Alvim-Ferraz, M.C.M. and Dias, J.M. (2011), "Activated carbon modifications to enhance its water treatment applications. An overview", J. Hazard. Mater., 187(1-3), 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033
- Sawant, S.Y., Somani, R.S., Panda, A.B. and Bajaj, H.C. (2013a), "Formation and characterization of onions shaped carbon soot from plastic wastes", Mat. Let., 94, 132-135. https://doi.org/10.1016/j.matlet.2012.12.035
- Sawant, S.Y., Somani, R.S., Panda, A.B. and Bajaj, H.C. (2013b), "Utilization of plastic wastes for synthesis of carbon microspheres and their use as a template for nanocrystalline copper(ii) oxide hollow spheres", ACS Sustainable Chem. Eng., 1(11), 1390-1397. https://doi.org/10.1021/sc400119b
-
Sawant, S.Y., Somani, R.S., Sharma, S.S. and Bajaj, H.C. (2014), "Solid-state dechlorination pathway for the synthesis of few layered functionalized carbon nanosheets and their greenhouse gas adsorptivity over CO and
$N_2$ ", Carbon, 68, 210-220. https://doi.org/10.1016/j.carbon.2013.10.081 - Sawant, S.Y., Somani, R.S., Cho, M.H. and Bajaj, H.C. (2015), "A low temperature bottom-up approach for the synthesis of few layered graphene nanosheets via C-C bond formation using a modified Ullmann reaction", RSC Adv., 5(58), 46589-46597. https://doi.org/10.1039/C5RA07196H
- Sharma, N. and Purkait, M.K. (2016), "Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane", Membr. Water Treat., Int. J., 7(3), 257-275. https://doi.org/10.12989/mwt.2016.7.3.257
- Shao, M.W., Wang, D.B., Yu, G.H., Hu, B., Yu, W.C. and Qian, Y.T. (2004), "The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation", Carbon, 42(1), 183-185. https://doi.org/10.1016/j.carbon.2003.10.010
- Tomaszewska, M. and Mozia, S. (2002), "Removal of organic matter from water by PAC/UF system", Water Res., 36(16), 4137-4143. https://doi.org/10.1016/S0043-1354(02)00122-7
- Tuinstra, F. and Koenig, J.L. (1970), "Raman spectrum of graphite", J. Chem. Phys., 53, 1126-1130. https://doi.org/10.1063/1.1674108
- Vito, L. and Punzi, V.L. (1990), "A comparison of solute rejection models in RO membrane", Ind. Eng. Chem. Res., 29, 259-263. https://doi.org/10.1021/ie00098a016
- Xu, Y. and Lebrun, R.E. (1999), "Comparison of nanofiltration properties of two membranes using electrolyte and non-electrolyte solutes", Desalination, 122(1), 95-106. https://doi.org/10.1016/S0011-9164(99)00031-4
- Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44(10), 3812-3818. https://doi.org/10.1021/es1002555
- Yu, S., Chen, Z., Cheng, Q., Lu, Z., Liu, M. and Gao, C. (2012), "Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions", Sep. Purif. Technol., 88, 121-129. https://doi.org/10.1016/j.seppur.2011.12.024
- Yue, Z.R., Mangun, C.L. and Economy, J. (2004), "Characterization of surface chemistry and pore structure of H3PO4-activated poly(vinyl alcohol) coated fiberglass", Carbon., 42(10), 1973-1982. https://doi.org/10.1016/j.carbon.2004.03.030
- Yun, S.H., Ingole, P.G., Choi, W.K., Kim, J.H. and Lee, H.K. (2015), "Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation", J. Mat. Chem. A, 3(15), 7888-7899 https://doi.org/10.1039/C5TA00706B
- Zheng, L.L., Su, Y.L., Wang, L.J. and Jiang, Z.Y. (2009), "Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique", Sep. Purif. Technol., 68(2), 244-249. https://doi.org/10.1016/j.seppur.2009.05.010
- Zhong, P.S., Widjojo, N., Chung, T.S., Weber, M. and Maletzko, C. (2012), "Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater", J. Membr. Sci., 417-418, 52-60. https://doi.org/10.1016/j.memsci.2012.06.013
Cited by
- Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation vol.8, pp.6, 2016, https://doi.org/10.12989/mwt.2017.8.6.591
- Adsorption of microcystin onto activated carbon: A review vol.10, pp.6, 2019, https://doi.org/10.12989/mwt.2019.10.6.405
- Enhancement of hydrophilicity and anti-fouling property of polysulfone membrane using amphiphilic nanocellulose as hydrophilic modifier vol.10, pp.6, 2016, https://doi.org/10.12989/mwt.2019.10.6.461
- Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.131
- Anti-Foulant Ultrafiltration Polymer Composite Membranes Incorporated with Composite Activated Carbon/Chitosan and Activated Carbon/Thiolated Chitosan with Enhanced Hydrophilicity vol.11, pp.11, 2016, https://doi.org/10.3390/membranes11110827