과제정보
연구 과제 주관 기관 : National University of Singapore Academic
참고문헌
- ASTM E976-10 (2010), Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, ASTM International, West Conshohocken, PA.
- Audoin, B., Pan, Y., Rossignol, C. and Chigarev, N. (2006), "On the use of laser-ultrasonics technique to excite selectively cylinder acoustic resonances", Ultrasonics, 44, 1195-1198. https://doi.org/10.1016/j.ultras.2006.05.070
- Barke, D. and Chiu, W.K. (2005), "Structural health monitoring in the railway industry: a review", Struct. Health Monit., 4(1), 81-93. https://doi.org/10.1177/1475921705049764
- Bruzelius, K. and Mba, D. (2004), "An initial investigation on the potential applicability of Acoustic Emission to rail track fault detection", NDT & E Int., 37(7), 507-516. https://doi.org/10.1016/j.ndteint.2004.02.001
- Chen, G.D. and Wang, Z.C. (2012), "A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components", Mech. Syst. Signal Pr., 28, 258-279. https://doi.org/10.1016/j.ymssp.2011.02.002
- Ciampa, F. and Meo, M. (2010), "Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique", Smart Mater. Struct., 19(4), 045027. https://doi.org/10.1088/0964-1726/19/4/045027
- Coccia, S., Bartoli, I., Marzani, A., Lanza di Scalea, F., Salamone, S. and Fateh, M. (2011), "Numerical and experimental study of guided waves for detection of defects in the rail head", NDT & E Int., 44(1), 93-100. https://doi.org/10.1016/j.ndteint.2010.09.011
- Ernst, R. and Dual, J. (2014), "Acoustic emission localization in beams based on time reversed dispersion", Ultrasonics, 54(6), 1522-1533. https://doi.org/10.1016/j.ultras.2014.04.012
- Esveld, C. (2001), Modern Railway Track, (2nd 2nd), MRT-Productions, Zaltbommel.
- Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
- Feldman, M. (2011), "A signal decomposition or lowpass filtering with Hilbert transform?", Mech. Syst. Signal Pr., 25(8), 3205-3208. https://doi.org/10.1016/j.ymssp.2011.04.016
- Hamstad, M.A. and O'Gallagher, A. (2005), "Effects of noise on Lamb-mode acoustic-emission arrival times determined by wavelet transform", J. Acoust. Emiss., 23(1-24.
- Hamstad, M.A., O'Gallagher, A. and Gary, J. (2002), "A wavelet transform applied to acoustic emission signals: Part 2: Source location", J. Acoust. Emiss., 20, 62-82.
- He, Y., Yin, X. and Chu, F. (2008), "Modal analysis of rubbing acoustic emission for rotor-bearing system based on reassigned wavelet scalogram", J. Vib. Acoust., 130(6), 061009. https://doi.org/10.1115/1.2981091
- Holford, K.M., Davies, A.W., Pullin, R. and Carter, D.C. (2001), "Damage location in steel bridges by acoustic emission", J. Intel. Mat. Syst. Str., 12(8), 567-576. https://doi.org/10.1177/10453890122145311
- Jiao, J., Wu, B. and He, C. (2008), "Acoustic emission source location methods using mode and frequency analysis", Struct. Control Health., 15(4), 642-651. https://doi.org/10.1002/stc.220
- Li, D., Kuang, K.S.C. and Koh, C.G. (2015), "Detection and quantification of fatigue cracks in rail steel using acoustic emission technique", Structural Health Monitoring 2015, Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford,CA, September.
- Li, S., Wang, X. and Zhao, M. (2015), "An improved cross-correlation method based on wavelet transform and energy feature extraction for pipeline leak detection", Smart Struct. Syst., 16(1), 213-222. https://doi.org/10.12989/sss.2015.16.1.213
- Nair, A. and Cai, C.S. (2010), "Acoustic emission monitoring of bridges: Review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020
- Ono, K. (2007), "Structural integrity evaluation using acoustic emission", J. Acoust. Emiss., 25, 1-20.
- Pandya, D.H., Upadhyay, S.H. and Harsha, S.P. (2013), "Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN", Expert Syst. Appl., 40(10), 4137-4145. https://doi.org/10.1016/j.eswa.2013.01.033
- Papaelias, M.P., Roberts, C. and Davis, C.L. (2008), "A review on non-destructive evaluation of rails: state-of-the-art and future development", P. I. Mech. Eng. F - J. Rai., 222(4), 367-384. https://doi.org/10.1243/09544119JEIM307
- Suzuki, H., Kinjo, T., Hayashi, Y., Takemoto, M., Ono, K. and Hayashi, Y. (1996), "Wavelet transform of acoustic emission signals", J. Acoust. Emiss., 14(2), 69-84.
- Takemoto, M., Nishino, H. and Ono, K. (2000), Wavelet transform applications to AE signal analysis, in: T. Kishi, M. Ohtsu, S. Yuyama (Eds.) Acoustic Emission-Beyond the Millennium, Elsevier, Oxford, UK, pp. 35-56.
- Teolis, A. (1998), Computational Signal Processing with Wavelets, Birkhauser, Boston.
- Thakkar, N.A., Steel, J.A. and Reuben, R.L. (2010), "Rail-wheel interaction monitoring using Acoustic Emission: A laboratory study of normal rolling signals with natural rail defects", Mech. Syst. Signal Pr., 24(1), 256-266. https://doi.org/10.1016/j.ymssp.2009.06.007
- Wang, Z.C., Geng, D., Ren, W.X., Chen, G.D. and Zhang, G.F. (2015), "Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform", Smart Struct. Syst., 15(1), 1-13. https://doi.org/10.12989/sss.2015.15.1.001
- Zhang, X., Feng, N., Wang, Y. and Shen, Y. (2014), "An analysis of the simulated acoustic emission sources with different propagation distances, types and depths for rail defect detection", Appl. Acoust., 86(0), 80-88. https://doi.org/10.1016/j.apacoust.2014.06.004
- Zhang, X., Feng, N., Wang, Y. and Shen, Y. (2015), "Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy", J. Sound Vib., 339(419-432. https://doi.org/10.1016/j.jsv.2014.11.021
피인용 문헌
- Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment vol.10, pp.8, 2017, https://doi.org/10.3390/ma10080962
- Threshold selection for extreme strain extrapolation due to vehicles on bridges vol.5, 2017, https://doi.org/10.1016/j.prostr.2017.07.030
- Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves vol.28, pp.6, 2017, https://doi.org/10.1088/1361-6501/aa670d
- The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates vol.27, pp.1, 2018, https://doi.org/10.1088/1361-665X/aa9bc2
- Rail crack monitoring based on Tsallis synchrosqueezed wavelet entropy of acoustic emission signals: A field study 2017, https://doi.org/10.1177/1475921717742339
- Threshold selection for extreme value estimation of vehicle load effect on bridges vol.14, pp.2, 2018, https://doi.org/10.1177/1550147718757698
- Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation vol.20, pp.1, 2017, https://doi.org/10.12989/sss.2017.20.1.011
- Finite element model updating - Case study of a rail damper vol.73, pp.1, 2016, https://doi.org/10.12989/sem.2020.73.1.027
- Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network vol.20, pp.4, 2016, https://doi.org/10.1177/1475921720922797
- A novel acoustic emission source location method for crack monitoring of orthotropic steel plates vol.253, pp.None, 2022, https://doi.org/10.1016/j.engstruct.2021.113717