Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)
References
- Castro, I.P. and Robins, A.G. (1977), "The flow around a surface mounted cube in uniform and turbulent streams", J. Fluid Mech., 79(2), 307-335. https://doi.org/10.1017/S0022112077000172
- Cook, N.J. (1978), "Wind tunnel simulation of the adiabatic atmospheric boundary layer by roughness, barrier and mixing device methods", J. Wind Eng. Ind. Aerod., 3(2-3), 157-176. https://doi.org/10.1016/0167-6105(78)90007-7
- ESDU (1985), "Characteristics of atmospheric turbulence near the ground. part ii: single point data for strong winds (neutral atmosphere)", In Engineering Sciences Data Unit.
- Hunt, J.C.R. and Fernholz, H. (1975), "Wind-tunnel simulation of the atmospheric boundary layer: a report on Euromech 50", J Fluid Mech., 70(3), 543-559. https://doi.org/10.1017/S0022112075002182
- Jochen, F. and Dominic, V.T. (2008), "Hybrid LES/RANS methods for the simulation of turbulent flows", Prog. Aerosp. Sci., 44(5), 349-377. https://doi.org/10.1016/j.paerosci.2008.05.001
- Lim, H.C. (2007), "Generation of a turbulent boundary layer using LES", Trans of the KSME (B), 31(8), 680-687.
- Lim, H.C. (2009), "Wind flow around rectangular obstacles with aspect ratio", Wind Struct., 12(4), 299-312. https://doi.org/10.12989/was.2009.12.4.299
- Lim, H.C., Castro, I.P. and Hoxey, R.P. (2007), "Bluff bodies in deep turbulent boundary layers:Reynolds-number issues", J. Fluid Mech., 571, 97-118. https://doi.org/10.1017/S0022112006003223
- Lim, H.C., Thomas, T.G. and Castro, I.P. (2009), "Flow around a cube in a turbulent boundary layer: LES and experiment", J. Wind Eng. Ind. Aerod., 97(2), 96-109. https://doi.org/10.1016/j.jweia.2009.01.001
- Lund, T.S., Xiaohua, W. and Squires, K.D. (1998), "Generation of turbulent inflow data for Spatially-Developing boundary layer simulations", J. Comput. Phys., 140(2), 233-258. https://doi.org/10.1006/jcph.1998.5882
- Martinuzzi, R. and Tropea, C. (1993), "The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow", J. Fluid Eng. - ASME, 115(1), 85-92. https://doi.org/10.1115/1.2910118
- Meroney, R.N., Leitl, B.M., Rafailidis, S. and Schatzmann, M. (1999), "Wind tunnel and numerical modeling of flow and dispersion about several building shapes", J. Wind Eng. Ind. Aerod., 81(1-3), 333-345. https://doi.org/10.1016/S0167-6105(99)00028-8
- Murakami, S. (1993), "Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46-47, 21-36. https://doi.org/10.1016/0167-6105(93)90112-2
- Murakami, S. and Mochida, A. (1988), "3D numerical simulation of airflow around a cubic model by means of k-E model", J. Wind Eng. Ind. Aerod., 31(2-3), 283-303. https://doi.org/10.1016/0167-6105(88)90009-8
- Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90(10), 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3
- Richards, P.J., Hoxey, R.P. and Short, L.J. (2001), "Wind pressure on a 6 m cube", J. Wind Eng. Ind. Aerod., 89(14-15), 1553-1564. https://doi.org/10.1016/S0167-6105(01)00139-8
- Richards, P.J., Hoxey, R.P., Connell, B.D. and Lander, D.P. (2007), "Wind-tunnel modelling of the Silsoe cube", J. Wind Eng. Ind. Aerod., 95(9-11), 1384-1399. https://doi.org/10.1016/j.jweia.2007.02.005
-
Salim, S.M. and Cheah, S.C. (2009), "Wall
$y^{+}$ strategy for dealing with wall-bounded turbulent flows", Proceedings of the International Multi-Conference of Engineers and Computer Scientists, Hong Kong. - Schofield, W. and Logan, E. (1990), "Turbulent shear flow over surface-mounted obstacles", J. Fluid Eng. - ASME, 112(4), 376-385. https://doi.org/10.1115/1.2909414
- Shur, M. L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008), "A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities", J. Heat Fluid Fl., 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on Structures-Fundamentals and Applications to Design, (3rd Ed.). Wiley, New York, USA.
- Tieleman, H.W. and Akins, R.E. (1996), "The effect of incident turbulence on the surface pressures of surface-mounted prisms", J Fluid. Struct., 10(4), 367-393. https://doi.org/10.1006/jfls.1996.0024
-
Tominaga, Y. and Stathopoulos, T. (2009), "Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k-
$\varepsilon$ models", Atmos. Environ., 43(20), 3200-3210. https://doi.org/10.1016/j.atmosenv.2009.03.038 - Xie, Z.T. and Castro, I.P. (2008), "Efficient generation of inflow conditions for large-eddy simulations of street-scale flows", Flow Turbul. Combus., 81(3), 449-470. https://doi.org/10.1007/s10494-008-9151-5
Cited by
- Wind effect on grooved and scallop domes vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.07.003
- The effect of incidence angle on the mean wake of surface-mounted finite-height square prisms vol.66, 2017, https://doi.org/10.1016/j.ijheatfluidflow.2017.05.012
- Post-Disaster Survey and Analysis of Glass Curtain Wall under Influence of Super Typhoon “Meranti” vol.455, pp.None, 2020, https://doi.org/10.1088/1755-1315/455/1/012044
- Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects vol.31, pp.3, 2016, https://doi.org/10.12989/was.2020.31.3.255
- A design method for multi-degree-of-freedom aeroelastic model of super tall buildings vol.32, pp.3, 2016, https://doi.org/10.12989/was.2021.32.3.219
- A design method for multi-degree-of-freedom aeroelastic model of super tall buildings vol.32, pp.3, 2016, https://doi.org/10.12989/was.2021.32.3.219
- Interference effect on corner-configured structures with variable geometry and blockage configurations under wind loads using CFD vol.22, pp.8, 2016, https://doi.org/10.1007/s42107-021-00400-0
- A fabrication method of continuous aero-model for high chimney vol.34, pp.None, 2016, https://doi.org/10.1016/j.istruc.2021.09.098
- A fabrication method of continuous aero-model for high chimney vol.34, pp.None, 2016, https://doi.org/10.1016/j.istruc.2021.09.098