References
- Abolmaali, A., Treadway, J., Aswath, P., Lu, F.K. and McCarthy, E. (2006), "Hysteresis behavior of t-stub connections with superelastic shape memory fasteners", J. Struct. Eng., 62, 831'-8.
- Adey, B.T., Grondin, G.Y. and Cheng, J.J.R. (1997), "Extended end plate moment connections under cyclic loading", Ph.D. Dissertation, University of Alberta, Alberta, Canada.
- AISC (2004), Extended end-plate moment connections, seismic and wind applications; Second Edition, AISC/Steel Design Guide 4.
- AISC (2005), Seismic provisions for structural steel buildings, Chicago, American Institute of Steel Construction.
- ASCE (2006), Minimum design load for building and other structures, ASCE /SEI 7-05.
- Auricchio, F. (2001), "A robust integration-algorithm for a finite strain shape memory alloy super-elastic model", Int. J. Plast., 17971-90.
- Christopoulos, C., Filiatrault, A., Uang, C.M. and Folz, B. (2002), "Posttensioned energy dissipating connections for moment-resisting steel frames", J. Struct. Eng., 128(9), 1111-20. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111)
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical assessment of the potential and limitations", J. Earthq. Eng., 8(3), 415-29. https://doi.org/10.1080/13632460409350495
- DesRoches, R., Taftali, B. and Ellingwood, B.R. (2010), "Seismic performance of steel frames with shape memory alloy connections, part I-analysis and seismic demands", J. Earthq. Eng., 14(4), 471-86. https://doi.org/10.1080/13632460903301088
- Ellingwood, B.R., Taftali, B. and DesRoches, R. (2010), "Seismic performance of steel frames with shape memory alloy connections, part II-probabilistic seismic demand assessment", J. Earthq. Eng., 14(5), 631-45. https://doi.org/10.1080/13632460903247935
- Eurocode 3 (2005), Design of steel structures, EN 1993-1-8:2005ww: European committee for standardization, Brussels.
- Eurocode 8 (2005), Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings, EN 1998-1:2004 Eurocode 8: European Committee for Standardization.
- Fang, C., Yam, M.C., Lam, A.C. and Xie, L. (2014), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr. Steel Res., 94, 122-136. https://doi.org/10.1016/j.jcsr.2013.11.008
- Hu, J.W., Choi, E.S. and Leon, R.T. (2011), "Design, analysis and application of innovative hybrid PR connections between steel beams and CFT columns", Smart Mater. Struct., 20(2), 25019-33. https://doi.org/10.1088/0964-1726/20/2/025019
- Lagoudas, D.C. (2008), Shape memory alloys: modeling and engineering applications, Springer, USA.
- Ma, H.W., Cho, C. and Wilkinson, T. (2008), "A numerical study on bolted end-plate connection using shape memory alloys", Smart Mater. Struct., 41(8), 1419-26. https://doi.org/10.1617/s11527-007-9339-5
- Ma, H.W., Wilkinson, T. and Cho, C. (2007), "Feasibility study on a self-centering beam-to-column connection by using the superelastic behavior of SMAs", Smart Mater. Struct., 16(5), 1555-63. https://doi.org/10.1088/0964-1726/16/5/008
- McCormick, J., Tyber, J., DesRoches, R., Gall, K. and Maier, H.J. (2007), "Structural engineering with NiTi. II: mechanical behavior and scaling", J. Eng. Mech., 133, 1019-29. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:9(1019)
- Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. and Sweeney, S. (2004), "Steel beam'-column connections using shape memory alloys", J. Struct. Eng., 130(5), 732-40. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(732)
- Penar, B.W. (2005), "Recentering beam'-column connections using shape memory alloys", Master thesis school of civil and environmental engineering, Georgia Institute of Technology, Georgia.
- Ricles, J.M., Sause, R., Peng, S.W. and Lu, L.W. (2002), "Experimental evaluation of earthquake resistant Post-tensioned steel connections", J. Struct. Eng., 128(7), 850-9. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(850)
- Rofooei, F.R. and Farhidzadeh, A. (2011), "Investigation on the seismic behavior of steel MRF with shape memory alloy equipped connections", The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, 14, 3325-3330.
- Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Bar-On, I. ... and Masuda, A. (2002), "An overview of vibration and seismic application of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-29. https://doi.org/10.1088/0964-1726/11/2/305
- SAC Joint Venture (1997), "Protocol for fabrication, inspection, testing and documentation of beamcolumn connection tests and other experimental specimens", Report no. SAC/BD- 97/02.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-74. https://doi.org/10.1016/j.engstruct.2005.12.010
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2011), "Experimental results of a Ni-Ti shape memory alloys (SMA)-based recentering beam'-column connection", Struct. Eng., 33(9), 2448. https://doi.org/10.1016/j.engstruct.2011.04.018
- Tyber, J., McCormick, J., Gall, K., DesRoches, R., Maier, J.H. and Abdel Maksoud, A.E. (2007), "Structural engineering with NiTi", Basic Mater. Character. J. Eng. Mech., 133, 1009-18.
- Wang, W., Chan, T. M., Shao, H. and Chen, Y. (2015), "Cyclic behavior of connections equipped with NiTi shape memory alloy and steel tendons between H-shaped beam to CHS column", Eng. Struct., 88, 37-50. https://doi.org/10.1016/j.engstruct.2015.01.028
- Wang, W., Chan, T.M. and Shao, H. (2015), "Seismic performance of beam'-column joints with SMA tendons strengthened by steel angles", J. Constr. Steel Res., 109, 61-71. https://doi.org/10.1016/j.jcsr.2015.02.011
- Wilson, J.C. and Wesolowsky, M.J. (2005), "Shape memory alloys for seismic response modification: a state-of-the-art review", Earthq. Spectra, 21(2), 569-601. https://doi.org/10.1193/1.1897384
Cited by
- Analysis of extended end plate connection equipped with SMA bolts using component method vol.36, pp.2, 2020, https://doi.org/10.12989/scs.2020.36.2.213