References
- Abedinnasab, M.H., Zohoor, H. and Yoon, Y.J. (2012), "Exact formulations of non-linear planar and spatial Euler-Bernoulli beams with finite strains", P. I. Mech. Eng. C - J. Mech. Eng. Sci., 226(5), 1225-1236. https://doi.org/10.1177/0954406211420206
- Auciello, N. and Lippiello, M. (2013), "Vibration analysis of rotating non-uniform Rayleigh beams using "CDM" method", Global Virtual Conference.
- Aydin, K. (2013), "Influence of Crack and Slenderness Ratio on the Eigenfrequencies of Euler-Bernoulli and Timoshenko Beams", Mech. Adv. Mater. Struct., 20(5), 339-352. https://doi.org/10.1080/15376494.2011.627635
- Bagdatli, S.M. and Uslu, B. (2015), "Free vibration analysis of axially moving beam under non-ideal conditions", Struct. Eng. Mech., 54(3), 597-605. https://doi.org/10.12989/sem.2015.54.3.597
- Baghani, M., Mohammadi, H. and Naghdabadi, R. (2014), "An analytical solution for shape-memorypolymer Euler-Bernoulli beams under bending", Int. J. Mech. Sci., 84, 84-90. https://doi.org/10.1016/j.ijmecsci.2014.04.009
- Bambill, D., Rossit, C., Rossi, R., Felix, D. and Ratazzi, A. (2013), "Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions", Meccanica, 48(6), 1289-1311. https://doi.org/10.1007/s11012-012-9668-5
- Banerjee, J. R. and Jackson, D. (2013), "Free vibration of a rotating tapered Rayleigh beam: a dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Struct. Eng. Mech., 59(4), 761-774. https://doi.org/10.12989/sem.2016.59.4.761
- Chang, J.R., Lin, W.J., Huang, C.J. and Choi, S.T. (2010), "Vibration and stability of an axially moving Rayleigh beam", Appl. Math. Model., 34(6), 1482-1497. https://doi.org/10.1016/j.apm.2009.08.022
- Datta, P. and Ganguli, R. (1990), "Vibration characteristics of a rotating blade with localized damage including the effects of shear deformation and rotary inertia", Comput. Struct., 36(6), 1129-1133. https://doi.org/10.1016/0045-7949(90)90221-M
- Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
- Elishakoff, I. (2004), Eigenvalues Of Inhomogeneous Structures: Unusual Closed-form Solutions: CRC Press, Boca Raton, Florida, USA.
- Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6), 517-533. https://doi.org/10.1080/15376490490452669
- Gunda, J.B. and Ganguli, R. (2008), "Stiff-string basis functions for vibration analysis of high speed rotating beams", J. Appl. Mech., 75(2), 024502. https://doi.org/10.1115/1.2775497
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Li, X., Tang, A. and Xi, L. (2013), "Vibration of a Rayleigh cantilever beam with axial force and tip mass", J. Constr. Steel Res., 80, 15-22. https://doi.org/10.1016/j.jcsr.2012.09.015
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Lou, P., Dai, G. and Zeng, Q. (2006), "Finite-element analysis for a Timoshenko beam subjected to a moving mass", P. I. Mech. Eng. C - J. Mech. Eng. Sci., 220(5), 669-678. https://doi.org/10.1243/09544062JMES119
- Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of non-rotating and rotating Timoshenko beams with damaged boundaries using the Chebyshev collocation method", Int. J. Mech. Sci., 60(1), 1-11. https://doi.org/10.1016/j.ijmecsci.2012.03.008
- Maiz, S., Bambill, D.V., Rossit, C.A. and Laura, P. (2007), "Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: exact solution", J. Sound Vib., 303(3), 895-908. https://doi.org/10.1016/j.jsv.2006.12.028
- Mao, Q. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54(3), 419-432. https://doi.org/10.12989/sem.2015.54.3.419
- Pai, P.F., Qian, X. and Du, X. (2013), "Modeling and dynamic characteristics of spinning Rayleigh beams", Int. J. Mech. Sci., 68, 291-303. https://doi.org/10.1016/j.ijmecsci.2013.01.029
- Sarkar, K. (2012), "Closed-Form Solutions for Rotating and Non-Rotating Beams: An Inverse Problem Approach", M.Sc (Engg) Thesis.
- Sarkar, K. and Ganguli, R. (2013), "Closed-form solutions for non-uniform Euler-Bernoulli free-free beams", J. Sound Vib., 332(23), 6078-6092. https://doi.org/10.1016/j.jsv.2013.06.008
- Sarkar, K. and Ganguli, R. (2014a), "Analytical test functions for free vibration analysis of rotating nonhomogeneous Timoshenko beams", Meccanica, 49(6), 1469-1477. https://doi.org/10.1007/s11012-014-9927-8
- Sarkar, K. and Ganguli, R. (2014b), "Modal tailoring and closed-form solutions for rotating non-uniform Euler-Bernoulli beams", Int. J. Mech. Sci., 88, 208-220. https://doi.org/10.1016/j.ijmecsci.2014.08.003
- Sarkar, K. and Ganguli, R. (2014c), "Tailoring the second mode of Euler-Bernoulli beams: an analytical approach", Struct. Eng. Mech., 51(5), 773-792. https://doi.org/10.12989/sem.2014.51.5.773
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.1155/2011/591716
- Stojanovic, V. and Kozic, P. (2012), "Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load", Int. J. Mech. Sci., 60(1), 59-71. https://doi.org/10.1016/j.ijmecsci.2012.04.009
- Tang, A.Y., Li, X.F., Wu, J.X. and Lee, K. (2015), "Flapwise bending vibration of rotating tapered Rayleigh cantilever beams", J. Constr. Steel Res., 112, 1-9. https://doi.org/10.1016/j.jcsr.2015.04.010
- Tang, A.Y., Wu, J.X., Li, X.F. and Lee, K. (2014), "Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017
- Xi, L.Y., Li, X.F. and Tang, G.J. (2013), "Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers", Int. J. Mech. Sci., 66, 233-238. https://doi.org/10.1016/j.ijmecsci.2012.11.013
- Yesilce, Y. (2015), "Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 53(3), 537-573. https://doi.org/10.12989/sem.2015.53.3.537
- Zahrai, S.M., Mortezagholi, M.H. and Mirsalehi, M. (2016), "Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element", Struct. Eng. Mech., 58(6), 949-966. https://doi.org/10.12989/sem.2016.58.6.949
Cited by
- Isospectrals of non-uniform Rayleigh beams with respect to their uniform counterparts vol.5, pp.2, 2018, https://doi.org/10.1098/rsos.171717
- Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam vol.61, pp.6, 2016, https://doi.org/10.12989/sem.2017.61.6.765
- A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks vol.66, pp.1, 2018, https://doi.org/10.12989/sem.2018.66.1.125
- Free vibration analysis of cracked functionally graded non-uniform beams vol.7, pp.1, 2016, https://doi.org/10.1088/2053-1591/ab6ad1
- The Artificial Intelligence and Design of Multibody Systems with Predicted Dynamic Behavior vol.14, pp.None, 2016, https://doi.org/10.46300/9106.2020.14.124