DOI QR코드

DOI QR Code

Reliability sensitivities with fuzzy random uncertainties using genetic algorithm

  • Jafaria, Parinaz (Department of Engineering and Technology, University of Mazandaran) ;
  • Jahani, Ehsan (Department of Engineering and Technology, University of Mazandaran)
  • Received : 2015.04.12
  • Accepted : 2016.08.23
  • Published : 2016.11.10

Abstract

A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the ${\lambda}$-cut approach. In fact, the fuzzy variables are transformed into the interval variables using the ${\lambda}$-cut approach. Genetic approach considers different possible combinations within the search domain (${\lambda}$-cut) and calculates the parameter sensitivities for each of the combinations.

Keywords

References

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099
  2. An, D., Choi, J.H., Kim, N.H. and Pattabhiraman, S. (2011), "Fatigue life prediction based on Bayesian approach to incorporate field data into probability model", Struct. Eng. Mech., 537(4), 427.
  3. Ayyub, B.M. (1991), "Systems framework for fuzzy sets in civil engineering", Fuzzy Set. Syst., 40(3), 491-508. https://doi.org/10.1016/0165-0114(91)90174-O
  4. Bae, H.R., Grandhi, R. and Canfield, R. (2006), "Sensitivity analysis of structural response uncertainty propagation using evidence theory", Struct. Multidisc. Optim., 31(4), 270-279. https://doi.org/10.1007/s00158-006-0606-9
  5. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 551(2), 249-265.
  6. Blockley, D. (1979), "The role of fuzzy sets in civil engineering", Fuzzy Set. Syst., 2(4), 267-278. https://doi.org/10.1016/0165-0114(79)90001-0
  7. Brown, C.B. and Yao, J.T. (1983), "Fuzzy sets and structural engineering", J. Struct. Eng., 109(5), 1211-1225. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:5(1211)
  8. Cao, Z., Dai, H. and Wang, W. (2011), "Low-discrepancy sampling for structural reliability sensitivity analysis", Struct. Eng. Mech., 538(1), 125-140.
  9. Chen, J., Wei, J. and Xu, Y. (2006), "Fuzzy reliability analysis of laminated composites", Struct. Eng. Mech., 522(6), 665-684.
  10. Cui, L., Lu, Z. and Wang, P. (2011). "Reliability sensitivity analysis with mixture of random and fuzzy variables", Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), 2011 International Conference on.
  11. Debruyne, S., Vandepitte, D. and Moens, D. (2015), "Identification of design parameter variability of honeycomb sandwich beams from a study of limited available experimental dynamic structural response data", Comput. Struct., 146, 197-213. https://doi.org/10.1016/j.compstruc.2013.09.004
  12. Ditlevsen, O. and Madsen, H.O. (1996), Structural reliability methods, Wiley New York
  13. Fang, Y., Xiong, J. and Tee, K.F. (2014), "An iterative hybrid random-interval structural reliability analysis", Earthq. Struct., 7(6), 1061-1070. https://doi.org/10.12989/eas.2014.7.6.1061
  14. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S. and Sentz, K. (2002), Constructing probability boxes and Dempster-Shafer structures, Sandia National Laboratories.
  15. Guo, J. and Du, X. (2007), "Sensitivity analysis with mixture of epistemic and aleatory uncertainties", AIAA J., 45(9), 2337-2349. https://doi.org/10.2514/1.28707
  16. Helton, J.C., Johnson, J.D., Oberkampf, W. and Sallaberry, C.J. (2006), "Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty", Reliab. Eng. Syst. Saf., 91(10), 1414-1434. https://doi.org/10.1016/j.ress.2005.11.055
  17. Jahani, E., Muhanna, R.L., Shayanfar, M.A. and Barkhordari, M.A. (2014), "Reliability assessment with fuzzy random variables using interval Monte Carlo simulation", Comput. Aid. Civil Infrastr. Eng., 29(3), 208-220. https://doi.org/10.1111/mice.12028
  18. Jiang, C., Zhang, W., Wang, B. and Han, X. (2014), "Structural reliability analysis using a copula-functionbased evidence theory model", Comput. Struct., 143, 19-31. https://doi.org/10.1016/j.compstruc.2014.07.007
  19. Jiang, S.H., Li, D.Q., Zhou, C.B. and Zhang, L.M. (2014), "Capabilities of stochastic response surface method and response surface method in reliability analysis", Struct. Eng. Mech., 49(1), 111-128. https://doi.org/10.12989/sem.2014.49.1.111
  20. Kaufmann, A. and Gupta, M.M. (1988), Fuzzy mathematical models in engineering and management science, Elsevier Science Inc.
  21. Kiureghian, A.D. and Ditlevsen, O. (2009), "Aleatory or epistemic? Does it matter?", Struct. Saf., 31(2), 105-112. https://doi.org/10.1016/j.strusafe.2008.06.020
  22. Krishnamoorthy, C. (2001), "Structural optimization in practice: Potential applications of genetic algorithms", Struct. Eng. Mech., 11(2), 151-170. https://doi.org/10.12989/sem.2001.11.2.151
  23. Kwakernaak, H. (1978), "Fuzzy random variables-I. Definitions and theorems", Inform. Sci., 15(1), 1-29. https://doi.org/10.1016/0020-0255(78)90019-1
  24. Kwakernaak, H. (1979), "Fuzzy random variables-II. Algorithms and examples for the discrete case", Inform. Sci., 17(3), 253-278. https://doi.org/10.1016/0020-0255(79)90020-3
  25. Lagaros, N.D. (2014), "Risk assessment of steel and steel-concrete composite 3D buildings considering sources of uncertainty", Earthq. Struct., 6(1), 19-43. https://doi.org/10.12989/eas.2014.6.1.019
  26. Liu, T., Li, A., Ding, Y. and Zhao, D. (2009), "Study of the structural damage identification method based on multi-mode information fusion", Struct. Eng. Mech., 31(3), 333-347. https://doi.org/10.12989/sem.2009.31.3.333
  27. Melchers, R. and Ahammed, M. (2004), "A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability", Comput. Struct., 82(1), 55-61. https://doi.org/10.1016/j.compstruc.2003.08.003
  28. Melchers, R.E. (1999), Structural Reliability Analysis and Prediction (Civil Engineering), Wiley.
  29. Moller, B. and Beer, M. (2008), "Engineering computation under uncertainty-capabilities of non-traditional models", Comput. Struct., 86(10), 1024-1041. https://doi.org/10.1016/j.compstruc.2007.05.041
  30. Moller, B., Graf, W. and Beer, M. (2000), "Fuzzy structural analysis using ${\alpha}$-level optimization", Comput. Mech., 26(6), 547-565. https://doi.org/10.1007/s004660000204
  31. Moller, B., Graf, W. and Beer, M. (2003), "Safety assessment of structures in view of fuzzy randomness", Comput. Struct., 81(15), 1567-1582. https://doi.org/10.1016/S0045-7949(03)00147-0
  32. Moller, B., Liebscher, M., Schweizerhof, K., Mattern, S. and Blankenhorn, G. (2008), "Structural collapse simulation under consideration of uncertainty-Improvement of numerical efficiency", Comput. Struct., 86(19-20), 1875-1884. https://doi.org/10.1016/j.compstruc.2008.04.011
  33. Pedroni, N., Zio, E., Ferrario, E., Pasanisi, A. and Couplet, M. (2013), "Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model", Comput. Struct., 126, 199-213. https://doi.org/10.1016/j.compstruc.2013.02.003
  34. Puri, M.L. and Ralescu, D.A. (1986), "Fuzzy random variables", J. Math. Anal. Appl., 114(2), 409-422. https://doi.org/10.1016/0022-247X(86)90093-4
  35. Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004), Sensitivity analysis in practice: a guide to assessing scientific models, John Wiley & Sons
  36. Schoefs, F., Yanez-Godoy, H. and Lanata, F. (2011), "Polynomial chaos representation for identification of mechanical characteristics of instrumented structures", Comput. Aid. Civil Infrastr. Eng., 26(3), 173-189. https://doi.org/10.1111/j.1467-8667.2010.00683.x
  37. Song, J., Kang, W.H., Kim, K.S. and Jung, S. (2010), "Probabilistic shear strength models for reinforced concrete beams without shear reinforcement", Struct. Eng. Mech., 11(1), 15.
  38. Thacker, B.H. and Huyse, L.J. (2007), "Probabilistic assessment on the basis of interval data", Struct. Eng. Mech., 25(3), 331-346. https://doi.org/10.12989/sem.2007.25.3.331
  39. Tutmez, B., Cengiz, A.K. and Sarici, D.E. (2013), "Use of uncertain numbers for appraising tensile strength of concrete", Struct. Eng. Mech., 46(4), 447-458. https://doi.org/10.12989/sem.2013.46.4.447
  40. Valliappan, S. and Pham, T. (1995), "Fuzzy logic applied to numerical modelling of engineering problems", Comput. Mech. Adv., 2(3), 213-281. https://doi.org/10.1016/0927-7951(95)00005-Q
  41. Wang, P., Lu, Z. and Tang, Z. (2013), "A derivative based sensitivity measure of failure probability in the presence of epistemic and aleatory uncertainties", Comput. Math. Appl., 65(1), 89-101. https://doi.org/10.1016/j.camwa.2012.08.017
  42. Wang, Z., Huang, H.Z., Li, Y., Pang, Y. and Xiao, N.C. (2012), "An approach to system reliability analysis with fuzzy random variables", Mech. Mach. Theory, 52(0), 35-46. https://doi.org/10.1016/j.mechmachtheory.2012.01.007
  43. Wu, J., Zhao, Y.Q. and Chen, S.H. (2005), "An improved interval analysis method for uncertain structures", Struct. Eng. Mech., 20(6), 713-726. https://doi.org/10.12989/sem.2005.20.6.713
  44. Yanfang, Z., Yanlin, Z. and Yimin, Z. (2011), "Reliability sensitivity based on first-order reliability method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406211405938.
  45. Yang, D., Li, G. and Cheng, G. (2006), "Convergence analysis of first order reliability method using chaos theory", Comput. Struct., 84(8), 563-571. https://doi.org/10.1016/j.compstruc.2005.11.009
  46. Yin, T., Lam, H.F. and Chow, H.M. (2010), "A Bayesian probabilistic approach for crack characterization in plate structures", Comput. Aid. Civil Infrastr. Eng., 25(5), 375-386. https://doi.org/10.1111/j.1467-8667.2009.00647.x

Cited by

  1. Variance‐based global sensitivity analysis for fuzzy random structural systems pp.1467-8667, 2019, https://doi.org/10.1111/mice.12436
  2. DOProC-based reliability analysis of structures vol.64, pp.4, 2016, https://doi.org/10.12989/sem.2017.64.4.413
  3. Stochastic analysis for uncertain deformation of foundations in permafrost regions vol.14, pp.6, 2018, https://doi.org/10.12989/gae.2018.14.6.589
  4. Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground vol.22, pp.4, 2016, https://doi.org/10.12989/gae.2020.22.4.339