DOI QR코드

DOI QR Code

Numerical simulation of the femur fracture under static loading

  • El Sallah, Zagane Mohammed (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes) ;
  • Smail, Benbarek (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes) ;
  • Abderahmane, Sahli (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes) ;
  • Bouiadjra, B. Bachir (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes) ;
  • Boualem, Serier (Laboratory Mechanics Physics of materials (LMPM), University Djillali Liabes of Sidi bel abbes)
  • 투고 : 2015.10.12
  • 심사 : 2016.08.02
  • 발행 : 2016.11.10

초록

Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers' transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.

키워드

참고문헌

  1. Abdel-Wahab, A.A., Maligno, A.R. and Silberschmidt, V.V. (2012), "Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM", Computational Materials Science, 52, 128-135. https://doi.org/10.1016/j.commatsci.2011.01.021
  2. Ali, A.A., Cristofolini, L., Schileo, E., Hu, H., Taddei, F., Kim, R.H. ... and Laz, P.J. (2014), "Specimenspecific modeling of hip fracture pattern and repair", J. Biomech., 47, 536-543. https://doi.org/10.1016/j.jbiomech.2013.10.033
  3. Ali, B., Abdelkader, B., Noureddine, B. and Boualem, S. (2015), "Numerical analysis of crack propagation in cement PMMA: application of SED approach", Struct. Eng. Mech., 55(1), 93-109. https://doi.org/10.12989/sem.2015.55.1.093
  4. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  5. Benbarek, S., Bouiadjra, B., Achour, T., Belhouari, M. and Serier, B. (2007), "Finite element analysis of the behaviour of crackemanating from microvoid in cement of reconstructed acetabulum", Mater. Sci. Eng. A, 457(1-2), 385-391. https://doi.org/10.1016/j.msea.2006.12.087
  6. Brauer, C., Coca-Perraillon, M., Cutler, D.M. and Rosen, A.B. (2009), "Incidence and mortality of hip fractures in the United States", J. Am. Med. Assoc., 302, 1573-1579. https://doi.org/10.1001/jama.2009.1462
  7. Cummings, S.R. and Melton, L.J. (2002), "Epidemiology and outcomes of osteoporotic fractures", Lancet, 359, 1761-1767. https://doi.org/10.1016/S0140-6736(02)08657-9
  8. Dassault Systemes (2013), Abaqus v6.13 Documentation-ABAQUS analysis user's manual, ABAQUS Inc., 6.13.
  9. Giambini, H., Qin, X., Dragomir-Daescu, D., An, K.N. and Nassr, A. (2015), "Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method", Med. Biol. Eng. Comput., 54(4), 583-593.
  10. Hambli, R., Bettamer, A. and Allaoui, S. (2013), "Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-damage", Med. Eng. Phys., 34, 202-210.
  11. Li, S., Abdel-Wahab, A., Demirci, E. and Silberschmidt, V.V. (2013), "Fracture process in cortical bone: XFEM analysis of microstructured models", Int. J. Fract., 184(1-2), 43-55. https://doi.org/10.1007/s10704-013-9814-7
  12. Li, Z. (2013), "Finite element analysis of pedestrian lower limb fractures by direct force : the result of being run over or impact", Foren. Sci. Int., 229, 43-51. https://doi.org/10.1016/j.forsciint.2013.03.027
  13. Liu, X.C., Qin, X. and Du, Z. (2010), "Bone fracture analysis using the extended finite element method (XFEM) with abaqus", The 34th annual meeting of the American society of biomechanics.
  14. Mischinski, S. and Ural, A. (2013), "Interaction of microstructure and microcrack growth in cortical bone: a finite element study", Comput. Meth. Biomech. Biomed. Eng., 16(1), 81-94. https://doi.org/10.1080/10255842.2011.607444
  15. Park, J.H., Lee, Y., Shon, O.J., Shon, H.C. and Kim, J.W. (2016), "Surgical tips of in-tramedullary nailing in severely bowed femurs in atyp-ical femur fractures: Simulation with 3D printed model. Injury", Int. J. Care Injur., 47, 1318-1324. https://doi.org/10.1016/j.injury.2016.02.026
  16. Schwarzkopf, R., Oni, J.K. and Marwin, S.E. (2013), "Total hip arthroplas-ty periprosthetic femoral fractures", Bull. Hospit. Joint Dis., 71(1), 68-78.
  17. Yoon, Y. and Cowin, S. (2008), "An estimate of anisotropic poroelastic constants of an osteon", Biomech. Model. Mechanobiol., 7(1), 13-26. https://doi.org/10.1007/s10237-006-0071-9

피인용 문헌

  1. Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.037
  2. Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law vol.72, pp.2, 2016, https://doi.org/10.12989/sem.2019.72.2.191
  3. Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects vol.5, pp.1, 2016, https://doi.org/10.12989/bme.2020.5.1.025
  4. Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.567