DOI QR코드

DOI QR Code

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam (Department of Aerospace Engineering, Semnan University) ;
  • Spagnoli, Andrea (DICATeA, University of Parma) ;
  • Kouchakzadeh, M.A. (Department of Aerospace Engineering and Center of Excellence in Aerospace Systems, Sharif University of Technology)
  • Received : 2016.01.08
  • Accepted : 2016.07.28
  • Published : 2016.11.10

Abstract

This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

Keywords

References

  1. Ac Shiau, R.R. and Soong, T. (1974), "Dynamic buckling of conical shells with imperfections", AIAA J., 12(6), 755-760. https://doi.org/10.2514/3.49346
  2. Ali, L., Jalal, E.B., Abdellatif, K. and Larbi, E.B. (2011), "Effect of multiple localized geometric imperfections on stability of thin axisymmetric cylindrical shells under axial compression", Int. J. Solid. Struct., 48(6), 1034-1043. https://doi.org/10.1016/j.ijsolstr.2010.12.007
  3. Association, A.W.W. (1984), "ANSI/AWWA D100-84, Standard for Welded Steel Tanks for Water Storage", Denver, Colo.: AWWA.
  4. Batista, R. and Croll, J. (1980), A design approach for unstiffened cylindrical shells under external pressure, John Wiley and Sons, Inc.
  5. Berry, P., Rotter, J. and Bridge, R. (2000), "Compression Tests on Cylinders with Circumferential Weld Depressions", J. Eng. Mech., 126(4), 405-413. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(405)
  6. BLachut, J. (2011), "On elastic-plastic buckling of cones", Thin Wall. Struct., 49(1), 45-52. https://doi.org/10.1016/j.tws.2010.08.005
  7. Calladine, C. (1995), "Understanding imperfection-sensitivity in the buckling of thin-walled shells", Thin Wall. Struct., 23(1), 215-235. https://doi.org/10.1016/0263-8231(95)00013-4
  8. Castro, S.G.P., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R. (2014), "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells", Thin Wall. Struct., 74, 118-132. https://doi.org/10.1016/j.tws.2013.08.011
  9. Chaudhuri, R.A. and Kim, D. (2008), "Influence of localized imperfection and surface-parallel shear modulus nonlinearity on the instability of a thin cross-ply cylindrical shell under external pressure", Compos. Struct., 82(2), 235-244. https://doi.org/10.1016/j.compstruct.2007.01.004
  10. Chryssanthopoulos, M., Pariatmono, N. and Spagnoli, A. (1997). "Buckling tests of unstiffened and stiffened conical shells in compression?", Proceedings, International Conference on Carrying Capacity of Steel Shell Structures, V. Krupka and P. Schneider, eds., October.
  11. Croll, J. and Ellinas, C. (1985), "A design formulation for axisymmetric collapse of stiffened and unstiffened cylinders", J. Energy Res. Technol., 107(3), 350-355. https://doi.org/10.1115/1.3231198
  12. Croll, J.G. (1995), "Towards a rationally based elastic-plastic shell buckling design methodology", Thin Wall. Struct., 23(1), 67-84. https://doi.org/10.1016/0263-8231(95)00005-X
  13. Deml, M. and Wunderlich, W. (1997), "Direct evaluation of the 'worst' imperfection shape in shell buckling", Comput. Meth. Appl. Mech. Eng., 149(1-4), 201-222. https://doi.org/10.1016/S0045-7825(97)00055-8
  14. Ding, X., Coleman, R. and Rotter, J. (1996), "Technique for Precise Measurement of Large-Scale Silos and Tanks", J. Surv. Eng., 122(1), 14-25. https://doi.org/10.1061/(ASCE)0733-9453(1996)122:1(14)
  15. Donnell, L. and Wan, C. (1950), "Effects of imperfections on buckling of thin cylinders and columns under axial compression", J. Appl. Mech., 17(1), 73.
  16. Esslinger, M. and Ciprian, J. (1982), Buckling of thin conical shells under axial loads with and without internal pressure, Springer
  17. Esslinger, M. and Geier, B. (1976), Calculated postbuckling loads as lower limits for the buckling loads of thin-walled circular cylinders, Springer
  18. Falzon, B.G. and Aliabadi, M.H. (2008), Buckling and postbuckling structures: experimental, analytical and numerical studies, Imperial College Press
  19. Ghazijahani, T.G., Jiao, H. and Holloway, D. (2015), "Experiments on locally dented conical shells under axial compression", Steel Compos. Struct., 19(6), 1355-1367. https://doi.org/10.12989/scs.2015.19.6.1355
  20. Goldfeld, Y. (2007), "Imperfection sensitivity of laminated conical shells", Int. J. Solid. Struct., 44(3-4), 1221-1241. https://doi.org/10.1016/j.ijsolstr.2006.06.016
  21. Holst, J.M.F.G., Rotter, J.M. and Calladine, C.R. (2000), "Imperfections and buckling in cylindrical shells with consistent residual stresses", J. Constr. Steel Res., 54(2), 265-282. https://doi.org/10.1016/S0143-974X(99)00047-4
  22. Hutchinson, J. and Koiter, W. (1970), "Postbuckling theory", Appl. Mech. Rev, 23(12), 1353-1366.
  23. Jalili, S., Zamani, J., Shariyat, M., Jalili, N., Ajdari, M. and Jafari, M. (2014), "Experimental and numerical investigation of composite conical shells' stability subjected to dynamic loading", Struct. Eng. Mech., 49(5), 555-568. https://doi.org/10.12989/sem.2014.49.5.555
  24. Jamal, M., Lahlou, L., Midani, M., Zahrouni, H., Limam, A., Damil, N. and Potier-Ferry, M. (2003), "A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression", Int. J. Solid. Struct., 40(5), 1311-1327. https://doi.org/10.1016/S0020-7683(02)00583-8
  25. Jamal, M., Midani, M., Damil, N. and Potier-Ferry, M. (1999), "Influence of localized imperfections on the buckling of cylindrical shells under axial compression", Int. J. Solid. Struct., 36(3), 441-464. https://doi.org/10.1016/S0020-7683(98)00028-6
  26. Koiter, W. (1963). "The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression", Koninkl. Ned. Akad. Wetenschap. Proc. B.
  27. Koiter, W. (1970), On the stability of elastic equilibrium (Translation from Dutch), Tech. Rep. AFFDL-TR-70-25, Airforce Flight Dynamics Lab
  28. Koiter, W.T. (1970), The stability of elastic equilibrium, DTIC Document
  29. Koiter, W.T. and Heijden, A.M.A. (2009), W.T. Koiter's elastic stability of solids and structures, Cambridge University Press
  30. Lackman, L. and Penzien, J. (1960), "Buckling of circular cones under axial compression", J. Appl. Mech., 27, 458. https://doi.org/10.1115/1.3644024
  31. Lawrence, K.L. (2012), ANSYS Tutorial: Release 14, SDC Publications
  32. Maali, M., Showkati, H. and Mahdi Fatemi, S. (2012), "Investigation of the buckling behavior of conical shells under weld-induced imperfections", Thin Wall. Struct., 57, 13-24. https://doi.org/10.1016/j.tws.2012.04.003
  33. Muggeridge, D. and Tennyson, R. (1969), "Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression", AIAA J., 7(11), 2127-2131. https://doi.org/10.2514/3.5568
  34. Norm, D. (1990), Structural steelwork: analysis of safety against buckling of shells, DIN 18800 part 4, German Institute for Standardization, Berlin.
  35. Pariatmono, N. and Chryssanthopoulos, M. (1995), "Asymmetric elastic buckling of axially compressed conical shells with various end conditions", AIAA J., 33(11), 2218-2227. https://doi.org/10.2514/3.12970
  36. Peterson, J., Seide, P. and Weingarten, V. (1968), NASA SP-8007: Buckling of thin-walled circular cylinders.
  37. Pircher, M., Berry, P.A., Ding, X. and Bridge, R.Q. (2001), "The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks", Thin Wall. Struct., 39(12), 999-1014. https://doi.org/10.1016/S0263-8231(01)00047-7
  38. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  39. Rotter, J. (1996). "Elastic plastic buckling and collapse in internally pressurised axially compressed silo cylinders with measured axisymmetric imperfections: interactions between imperfections, residual stresses and collapse", Proceedings of the International Workshop on Imperfections in Metal Silos: Measurement, Characterisation and Strength Analysis, CA-Silo, Lyon, France.
  40. Rotter, J. and Teng, J. (1989), "Elastic Stability of Cylindrical Shells with Weld Depressions", J. Struct. Eng., 115(5), 1244-1263. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:5(1244)
  41. Rotter, J.M. and Schmidt, H. (2008), ECCS TWG 8.4. Buckling of steel shells, 5th Edition, European convention for constructional steelwork, Brussels.
  42. Schultz, M.R. and Nemeth, M.P. (2010), "Buckling imperfection sensitivity of axially compressed orthotropic cylinders", AIAA J., 2531.
  43. Shakouri, M., Spagnoli, A. and Kouchakzadeh, M.A. (2014), "Re-interpreting simultaneous buckling modes of axially compressed isotropic conical shells", Thin Wall. Struct., 84, 360-368. https://doi.org/10.1016/j.tws.2014.07.013
  44. Sofiyev, A.H. (2011), "Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells", Int. J. Mech. Sci., 53(9), 753-761. https://doi.org/10.1016/j.ijmecsci.2011.06.007
  45. Song, C.Y., Teng, J.G. and Rotter, J.M. (2004), "Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression", Int. J. Solid. Struct., 41(24-25), 7155-7180. https://doi.org/10.1016/j.ijsolstr.2004.05.040
  46. Spagnoli, A. (2001), "Different buckling modes in axially stiffened conical shells", Eng. Struct., 23(8), 957-965. https://doi.org/10.1016/S0141-0296(00)00112-7
  47. Spagnoli, A. (2003), "Koiter circles in the buckling of axially compressed conical shells", Int. J. Solid. Struct., 40(22), 6095-6109. https://doi.org/10.1016/S0020-7683(03)00369-X
  48. Spagnoli, A. and Chryssanthopoulos, M.K. (1999), "Elastic buckling and postbuckling behaviour of widelystiffened conical shells under axial compression", Eng. Struct., 21(9), 845-855. https://doi.org/10.1016/S0141-0296(98)00036-4
  49. Standard, A. (1977), Recommended Rules for Design and Construction of Large, Welded, Low-Pressure Storage Tanks, API.
  50. Teng, J. and Rotter, J. (1992), "Buckling of pressurized axisymmetrically imperfect cylinders under axial loads", J. Eng. Mech., 118(2), 229-247. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(229)
  51. Teng, J.G. and Rotter, J.M. (2004), Buckling of thin metal shells, Spon Press
  52. Teng, J.G. and Song, C.Y. (2001), "Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections", Int. J. Solid. Struct., 38(18), 3263-3280. https://doi.org/10.1016/S0020-7683(00)00222-5
  53. VonKarman, T. and Tsien, H.-S. (1941), "The buckling of thin cylindrical shells under axial compression", J. Aeronaut. Sci., 8(8), 303. https://doi.org/10.2514/8.10722
  54. Yamada, S. and Croll, J. (1999), "Contributions to understanding the behavior of axially compressed cylinders", J. Appl. Mech., 66(2), 299-309. https://doi.org/10.1115/1.2791049
  55. Yamaki, N. (1984), Elastic Stability of Circular Cylindrical Shells, Elsevier Science

Cited by

  1. Buckling of axially compressed composite cylinders with geometric imperfections vol.29, pp.4, 2016, https://doi.org/10.12989/scs.2018.29.4.557
  2. Analytical solution for stability analysis of joined cross-ply thin laminated conical shells under axial compression vol.3, pp.2, 2021, https://doi.org/10.12989/cme.2021.3.2.117