References
- Aktas, G. (2016), "Investigation of fresh concrete behavior under vibration using mass-spring model", Struct. Eng. Mech., 57(3), 425-439. https://doi.org/10.12989/sem.2016.57.3.425
- Aktas, G. and Karasin, A. (2014), "Experimental confirmation for the validity of Ritz method in structural dynamic analysis", J. Theor. App. Mech., 52(4), 981-993.
- Aktas, G., Tanrikulu, A.K. and Baran, T. (2014), "Computer-aided mold design algorithm for precast concrete elements", ACI Mat. J., 111(1), 77-87.
- Alexsandridis, A. and Gardner, N.J. (1981), "Mechanical behaviour of fresh concrete", Cement Concrete Res., 11(3), 323-339. https://doi.org/10.1016/0008-8846(81)90105-8
- Beale, M.H., Hagan, M.T. and Demuth, H.B. (2014), Neural Network Toolbox User's Guide, The MathWorks, Inc., Natick, MA, USA.
- Dantas, A.T.A., Leite, M.B. and Nagahama K.J. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Const. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
- Demir, A. (2015), "Prediction of hybrid fibre-added concrete strength using artificial neural networks", Comput. Concrete, 15(4), 503-514. https://doi.org/10.12989/cac.2015.15.4.503
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
- Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Soft., 41, 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006
- Garzon-Roca, J., Adama, J.M., Sandoval, C. and Roca, P. (2013), "Estimation of the axial behaviour of masonry walls based on Artificial Neural Networks", Compos. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006
- Kao, C.S and Yeh, I.C. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739
- Kardan, I., Abiri, R., Kabganian, M. and Vahabi, M. (2013), "Modeling of shape memory alloy springs using a recurrent neural network", J. Theor. App. Mech., 51(3), 711-718.
- Larrard, F.D., Hu, C., Sedran. T., Szitkar. J.C., Jolt. M., Claux. F. and Derkx, F. (1997), "New Rheometer for soft-to-fluid fresh concrete", ACI Mater. J., 94(3), 234-243.
- Robeyst, N., Grosse, C.U. and Belie, N.D. (2011), "Relating ultrasonic measurements on fresh concrete with mineral additions to the microstructure development simulated by CEMHYD3D", Cement Concrete Compos., 33, 680-693. https://doi.org/10.1016/j.cemconcomp.2011.03.004
- Tattersall, G.H. and Baker, P.H. (1988), "Effect of vibration on the rheological properties of fresh concrete", Mag. Concrete Res., 40(143), 79-89. https://doi.org/10.1680/macr.1988.40.143.79
- Thomas, J. and Harilal, B. (2014), "Fresh and hardened properties of concrete containing cold bonded aggregates", Adv. Concrete Constr., 2(2), 77-89. https://doi.org/10.12989/acc.2014.2.2.077
- U.S. Department of Transportation (2003), "Poission's ratio and temperature gradient adjustments", HIPERPAV Validation Model Summary, Federal Highway Administration Research, Technology, and Development Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101-2296, 1-4.
- Wenzel, D. (1986), "Compaction of concrete -principles, practice, special problems", Beton. Fert. Tech., 52(3), 153-158.
Cited by
- Displacement prediction in geotechnical engineering based on evolutionary neural network vol.13, pp.5, 2016, https://doi.org/10.12989/gae.2017.13.5.845
- Soil foundation effect on the vibration response of concrete foundations using mathematical model vol.22, pp.2, 2016, https://doi.org/10.12989/cac.2018.22.2.221
- Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR vol.5, pp.2, 2016, https://doi.org/10.12989/acd.2020.5.2.195
- Displacement prediction of precast concrete under vibration using artificial neural networks vol.74, pp.4, 2016, https://doi.org/10.12989/sem.2020.74.4.559
- Microstructural and mechanical characteristics of self-compacting concrete with waste rubber vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.175