DOI QR코드

DOI QR Code

Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

  • Liu, Lei (Department of Animal Science, Shandong Agricultural University) ;
  • Li, Chunyan (Department of Animal Science, Shandong Agricultural University) ;
  • Fu, Chunyan (Department of Animal Science, Shandong Agricultural University) ;
  • Li, Fuchang (Department of Animal Science, Shandong Agricultural University)
  • Received : 2015.10.05
  • Accepted : 2016.03.16
  • Published : 2016.12.01

Abstract

An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

Keywords

References

  1. Anania, F. A. 2002. Leptin, liver, and obese mice--fibrosis in the fat lane. Hepatology 36:246-248.
  2. Asai, A. and T. Miyazawa. 2001. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J. Nutr. 131:2932-2935. https://doi.org/10.1093/jn/131.11.2932
  3. Bai, Y., S. Zhang, K. S. Kim, J. K. Lee, and K. H. Kim. 1996. Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J. Biol. Chem. 271:13939-13942. https://doi.org/10.1074/jbc.271.24.13939
  4. Barter, P. J. and J. I. Lally. 1978. Metabolism of esterified cholesterol in the plasma very low density lipoproteins of the rabbit. Atherosclerosis 31:355-364. https://doi.org/10.1016/0021-9150(78)90070-9
  5. Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13:84-89. https://doi.org/10.1016/S1043-2760(01)00524-0
  6. Browning, J. D., L. S. Szczepaniak, R. Dobbins, P. Nuremberg, J. D. Horton, J. C. Cohen, S. M. Grundy, and H. H. Hobbs. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387-1395. https://doi.org/10.1002/hep.20466
  7. Buettner, C., E. D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, and J. Harvey-White et al. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3- independent mechanisms. Nat. Med. 14:667-675. https://doi.org/10.1038/nm1775
  8. Carling, D., M. J. Sanders, and A. Woods. 2008. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 32:S55-S59.
  9. Cho, K. H., H. J. Kim, V. S. Kamanna, and N. D. Vaziri. 2010. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim. Biophys. Acta 1800:6-15. https://doi.org/10.1016/j.bbagen.2009.10.009
  10. Cruz-Bautista, I., R. Mehta, J. Cabiedes, C. Garcia-Ulloa, L. E. Guillen-Pineda, P. Almeda-Valdes, D. Cuevas-Ramos, and C. A. Aguilar-Salinas. 2015. Determinants of VLDL composition and apo B-containing particles in familial combined hyperlipidemia. Clin. Chim. Acta 438:160-165. https://doi.org/10.1016/j.cca.2014.08.018
  11. De blas, C. and G. G. Mateos. 1998. Feed formulation. In: Nutrition of the Rabbit (Eds. C. de Blas and J. Wiseman). CAB International, Wallingford, UK. pp. 222-232.
  12. Fabbrini, E., B. S. Mohammed, K. M. Korenblat, F. Magkos, J. McCrea, B. W. Patterson, and S. Klein. 2010. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95:2727-2735. https://doi.org/10.1210/jc.2009-2622
  13. Gallardo, N., E. Bonzon-Kulichenko, T. Fernandez-Agullo, E. Molto, S. Gomez-Alonso, P. Blanco, J. M. Carrascosa, M. Ros, and A. Andres. 2007. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 148:5604-5610. https://doi.org/10.1210/en.2007-0933
  14. Ganji, S. H., M. L. Kashyap, and V. S. Kamanna. 2015. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism 64:982-990. https://doi.org/10.1016/j.metabol.2015.05.002
  15. Hamaguchi, M., T. Kojima, N. Takeda, T. Nakagawa, H. Taniguchi, K. Fujii, T. Omatsu, T. Nakajima, H. Sarui, and M. Shimazaki et al. 2005. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann. Intern. Med. 143:722-728. https://doi.org/10.7326/0003-4819-143-10-200511150-00009
  16. Havel, P. J. 2004. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:143-151. https://doi.org/10.2337/diabetes.53.2007.S143
  17. Jin, F. Y., V. S. Kamanna, and M. L. Kashyap. 1997. Niacin decreases removal of high-density lipoprotein apolipoprotein AI but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 17:2020-2028. https://doi.org/10.1161/01.ATV.17.10.2020
  18. Kamanna, V. S., S. H. Ganji, and M. L. Kashyap. 2013. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol. 24:239-245. https://doi.org/10.1097/MOL.0b013e3283613a68
  19. Kitamura, T., Y. Feng, Y. I. Kitamura, S. C. Chua Jr., A. W. Xu, G. S. Barsh, L. Rossetti, and D. Accili. 2006. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12:534-540. https://doi.org/10.1038/nm1392
  20. Lamon-Fava, S., M. R. Diffenderfer, P. H. R. Barrett, A. Buchsbaum, M. Nyaku, K. V. Horvath, B. F. Asztalos, S. Otokozawa, M. Ai, and N. R. Matthan et al. 2008. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28:1672-1678. https://doi.org/10.1161/ATVBAHA.108.164541
  21. Lillie, R. D. and H. M. Fullmer. 1976. Histopathologic Technic and Practical Histochemistry. 4th edn. McGraw-Hill, London, UK.
  22. Li, X., J. S. Millar, N. Brownell, F. Briand, and D. J. Rader. 2010. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80:1450-1457. https://doi.org/10.1016/j.bcp.2010.07.023
  23. Li, Y., G. Qin, J. Liu, L. Mao, Z. Zhang, and J. Shang. 2014. Adipose tissue regulates hepatic cholesterol metabolism via adiponectin. Life Sci. 118:27-33. https://doi.org/10.1016/j.lfs.2014.10.003
  24. Lin, Z., X. Pan, F. Wu, D. Ye, Y. Zhang, Y. Wang, L. Jin, Q. Lian, Y. Huang, and H. Ding et al. 2015. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131:1861-1871. https://doi.org/10.1161/CIRCULATIONAHA.115.015308
  25. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  26. Matsusue, K., M. Haluzik, G. Lambert, S. H. Yim, O. Gavrilova, J. M. Ward, B. Brewer Jr., M. L. Reitman, and F. J. Gonzalez. 2003. liver-specific disruption of $ppar{\gamma}$ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111:737-747. https://doi.org/10.1172/JCI200317223
  27. Nakae, J. and D. Accili. 1999. The mechanism of insulin action. J. Pediatr. Endocrinol. Metab. 12:721-731.
  28. Nguyen, P., V. Leray, M. Diez, S. Serisier, J. Le Bloc'h, B. Siliart, and H. Dumon. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92:272-283. https://doi.org/10.1111/j.1439-0396.2007.00752.x
  29. Paulauskis, J. D. and H. S. Sul. 1989. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264:574-577.
  30. Peng, Y., D. Rideout, S. Rakita, M. Sajan, R. Farese, M. You, and M. M. Murr. 2009. Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J. Gastrointest. Surg. 13:2043-2049. https://doi.org/10.1007/s11605-009-1032-2
  31. Pullen, D. L., J. S. Liesman, and R. S. Emery. 1990. A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J. Anim. Sci. 68:1395-1399. https://doi.org/10.2527/1990.6851395x
  32. Reddy, J. K. and M. S. Rao. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852-G858. https://doi.org/10.1152/ajpgi.00521.2005
  33. Rubic, T., M. Trottmann, and R. L. Lorenz. 2004. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP binding cassette A1 in monocytoid cells by niacin. Biochem. Pharmacol. 67:411-419. https://doi.org/10.1016/j.bcp.2003.09.014
  34. Ruzzin, J., R. Petersen, E. Meugnier, L. Madsen, E. J. Lock, H. Lillefosse, T. Ma, S. Pesenti, S. B. Sonne, T. T. Marstrand, and M. K. Malde et al. 2010. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ. Health Perspect. 118:465-471.
  35. Salhanick, A. I., S. I. Schwartz, J. M. Amatruda. 1991. Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism 40:275-279. https://doi.org/10.1016/0026-0495(91)90109-A
  36. Saltiel, A. R. and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806. https://doi.org/10.1038/414799a
  37. Simon, J., P. Freychet, and G. Rosselin. 1974. Chicken insulin: radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes. Endocrinology 95:1439-1449. https://doi.org/10.1210/endo-95-5-1439
  38. van der Hoorn, J. W., W. de Haan, J. F. Berbee, L. M. Havekes, J. W. Jukema, P. C. Rensen, and H. M. Princen. 2008. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE* 3Leiden. CETP mice. Arterioscler Thromb. Vasc. Biol. 28:2016-2022. https://doi.org/10.1161/ATVBAHA.108.171363
  39. Weibel, E. R. and R. P. Bolender. 1973. Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy (Ed. M. A. Hayat). Van Nostrand Rheinhold Company, New York, pp. 237-296.
  40. Wise, A., S. M. Foord, N. J. Fraser, A. A. Barnes, N. Elshourbagy, M. Eilert, D. M. Ignar, P. R. Murdock, K. Steplewski, and A. Green et al. 2003. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278:9869-9874. https://doi.org/10.1074/jbc.M210695200
  41. Xu, A., Y. Wang, H. Keshaw, L. Y. Xu, K. S. Lam, and G. J.Cooper. 2003. The fat-derived hormone adiponectin alleviatesalcoholic and nonalcoholic fatty liver diseases in mice. J. Clin.Invest. 112:91-100. https://doi.org/10.1172/JCI200317797
  42. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara,Y. Mori, T. Ide, K. Murakami, and N. Tsuboyama-Kasaoka etal. 2001. The fat-derived hormone adiponectin reverses insulinresistance associated with both lipoatrophy and obesity. Nat.Med. 7:941-946. https://doi.org/10.1038/90984

Cited by

  1. Effect of dietary copper addition on lipid metabolism in rabbits vol.61, pp.1, 2017, https://doi.org/10.1080/16546628.2017.1348866
  2. Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscle and Adipose Tissue vol.9, pp.10, 2019, https://doi.org/10.3390/ani9100799
  3. Identification of Crucial Genetic Factors, Such as PPARγ, that Regulate the Pathogenesis of Fatty Liver Disease in Dairy Cows Is Imperative for the Sustainable Development of Dairy Industry vol.10, pp.4, 2020, https://doi.org/10.3390/ani10040639
  4. Application of N-carbamylglutamate in Rex rabbits to reduce body fat deposition and its possible mechanism vol.124, pp.1, 2016, https://doi.org/10.1017/s0007114520000860
  5. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms vol.330, pp.None, 2016, https://doi.org/10.1016/j.cbi.2020.109199
  6. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp vol.269, pp.None, 2016, https://doi.org/10.1016/j.envpol.2020.116186
  7. Acetate stimulates lipogenesis via AMPKα signaling in rabbit adipose-derived stem cells vol.303, pp.None, 2016, https://doi.org/10.1016/j.ygcen.2021.113715
  8. Acetate stimulates lipogenesis via AMPKα signaling in rabbit adipose-derived stem cells vol.303, pp.None, 2016, https://doi.org/10.1016/j.ygcen.2021.113715