DOI QR코드

DOI QR Code

Numerical investigations on breakage behaviour of granular materials under triaxial stresses

  • Zhou, Lunlun (School of Civil Engineering, Wuhan University) ;
  • Chu, Xihua (School of Civil Engineering, Wuhan University) ;
  • Zhang, Xue (ARC Centre of Excellence for Geotechnical Science and Engineering, The University of Newcastle) ;
  • Xu, Yuanjie (School of Civil Engineering, Wuhan University)
  • Received : 2015.03.20
  • Accepted : 2016.06.08
  • Published : 2016.11.25

Abstract

The effect of particle breakage and intermediate principal stress ratio on the behaviour of crushable granular assemblies under true triaxial stress conditions is studied using the discrete element method. Numerical results show that the increase of intermediate principal stress ratio $b(b=({\sigma}_2-{\sigma}_3)/({\sigma}_1-{\sigma}_3))$ results in the increase of dilatancy at low confining pressures but the decrease of dilatancy at high confining pressures, which stems from the distinct increasing compaction caused by breakage with b. The influence of b on the evolution of the peak apparent friction angle is also weakened by particle breakage. For low relative breakage, the relationship between the peak apparent friction angle and b is close to the Lade-Duncan failure model, whereas it conforms to the Matsuoka-Nakai failure model for high relative breakage. In addition, the increasing tendency of relative breakage, calculated based on a fractal particle size distribution with the fractal dimension being 2.5, declines with the increasing confining pressure and axial strain, which implies the existence of an ultimate graduation. Finally, the relationship between particle breakage and plastic work is found to conform to a unique hyperbolic correlation regardless of the test conditions.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Bolton, M.D., Nakata. Y. and Cheng, Y.P. (2008), "Micro-and macro-mechanical behaviour of DEM crushable materials", Geotechnique, 58(6), 471-480. https://doi.org/10.1680/geot.2008.58.6.471
  2. Budhu, M. (2008), Soil Mechanics and Foundations, Wiley, New York, NY, USA.
  3. Casini, F., Viggiani, G.M.B. and Springman, S.M. (2013), "Breakage of an artificial crushable material under loading", Granul. Matter., 15(5), 661-673. https://doi.org/10.1007/s10035-013-0432-x
  4. Cheng, Y.P., Nakata, Y. and Bolton, M.D. (2003), "Distinct element simulation of crushable soil", Geotechnique, 53(7), 633-641. https://doi.org/10.1680/geot.2003.53.7.633
  5. Cheng, Y.P., Bolton, M.D. and Nakata, Y. (2004), "Crushing and plastic deformation of soils simulated using DEM", Geotechnique, 54(2), 131-141. https://doi.org/10.1680/geot.2004.54.2.131
  6. Chu, X.H. and Li, X.K. (2006), "Hierarchical multi-scale discrete particle model and crushing simulation", J. Dalian. Univ. Techno., 46, 319-326. [In Chinese]
  7. Coop, M.R., Sorensen, K.K., Bodas, Freitas, T. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163. https://doi.org/10.1680/geot.2004.54.3.157
  8. Davidge, R.W. (1979), Mechanical Behaviour of Ceramics, University of Cambridge Press.
  9. Duncan, J.M., Byrne, P., Wong, K.S. and Mabray, P. (2014), "Stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses", University of California; Berkely, CA, USA.
  10. Einav, I. (2007), "Beakage mechanics-Part I: Theory", J. Mech. Phys. Solids., 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003
  11. Ezaoui, A., Lecompte, T., Di Benedetto, H. and Garcia, E. (2011), "Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material", Granul. Matter., 13(4), 283-301. https://doi.org/10.1007/s10035-010-0227-2
  12. Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
  13. Huang, X., Hanley, K.J., O'Sullivan, C., Kwork, C.Y. and Wadee, M.A. (2014), "DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials", Granul. Matter., 16(5), 641-655. https://doi.org/10.1007/s10035-014-0520-6
  14. Itasca, Consulting Group, Inc. (2008), Particle Flow Code in Three Dimensions (PFC3D); Version 4.0, Itasca, Consulting Group.
  15. Lade, P.V. and Duncan, J.M. (1975), "Elastoplastic stress-strain theory for cohesionless soil", J. Geotech. Engng. Div., 101, 1037-1053.
  16. Lade, P.V., Yamamuro, J.A. and Bopp, P.A. (1996), "Significance of particle crushing in granular materials", J. Geotech. Eng., 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309)
  17. Matsuoka, H. and Nakai, T. (1978), "A generalized frictional law for soil shear deformation", Proceedings of the US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, Japan, pp. 138-154.
  18. McDowell, G.R. and Bolton, M.D. (1998), "On the micromechanics of crushable aggregates", Geotechnique, 48(5), 667-579. https://doi.org/10.1680/geot.1998.48.5.667
  19. McDowell, G.R. and Harireche, O. (2002a), "Discrete element modeling of soil particle fracture", Geotechnique, 52(2), 131-135. https://doi.org/10.1680/geot.2002.52.2.131
  20. McDowell, G.R. and Harireche, O. (2002b), "Discrete element modeling of yielding and normal compression of sand", Geotechnique, 52(4), 299-304. https://doi.org/10.1680/geot.2002.52.4.299
  21. Nakata, Y., Hyde, A.F.L., Hyodo, M. and Murata, H. (1999), "A probabilistic approach to sand particle crushing in the triaxial test", Geotechnique, 49(5), 567-583. https://doi.org/10.1680/geot.1999.49.5.567
  22. Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y. and Murata, H. (2001a), "Microscopic particle crushing of sand subjected to high pressure one-dimensional compression", Soil. Found., 41, 69-82. https://doi.org/10.3208/sandf.41.69
  23. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F.L. and Murata, H. (2001b), "One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength", Soil. Found., 41, 39-51.
  24. Ng, T.-T. (2004), "Shear strength of assemblies of ellipsoidal particles", Geotechnique, 54(10), 659-669. https://doi.org/10.1680/geot.2004.54.10.659
  25. O'Sullivan, C., Wadee, M.A., Hanley, K.J. and Barreto, D. (2013), "Use of DEM and elastic stability analysis to explain the influence of the intermediate principal stress on shear strength", Geotechnique, 63(15), 1298-1309. https://doi.org/10.1680/geot.12.P.153
  26. Randolph, M.F., Dolwin, J. and Beck, R. (1994), "Design of driven piles in sand", Geotechnique, 44(3), 427-448. https://doi.org/10.1680/geot.1994.44.3.427
  27. Robertson, D. (2000), "Numerical simulations of crushable aggregates", Ph.D. Dissertation, University of Cambridge, UK.
  28. Sun, D., Huang, W. and Yao, Y. (2008), "An experimental study of failure and softening in sand under three-dimensional stress condition", Granul. Matter., 10, 187-195. https://doi.org/10.1007/s10035-008-0083-5
  29. Tarantino, A. and Hyde, A.F.L. (2005), "An experimental investigation of work dissipation in crushable materials", Geotechnique, 55(8), 575-584. https://doi.org/10.1680/geot.2005.55.8.575
  30. Wang, Q. and Lade, P.V. (2006), "Assessment of test data for selection of 3-D failure criterion for sand", Int. J. Numer. Anal. Meth. Geomech., 30(4), 307-333. https://doi.org/10.1002/nag.471
  31. Wang, J.F. and Yan, H.B. (2012), "DEM analysis of energy dissipation in crushable soils", Soil. Found., 52(4), 644-657. https://doi.org/10.1016/j.sandf.2012.07.006
  32. Wang, J.F. and Yan, H.B. (2013), "On the role of particle breakage in the shear failure behavior of granular soils by DEM", Int. J. Numer. Anal. Meth. Geomech., 37(8), 832-854. https://doi.org/10.1002/nag.1124
  33. Weibull, W. (1951), "A statistical distribution function of wide applicability", J. Appl. Mech., 18, 293-297.
  34. Zhou, L.L. and Chu, X.H. (2014), "Evolution of anisotropy in granular materials: Effect of particle rolling and particle crushing", Strength. Mater., 46(2), 214-220. https://doi.org/10.1007/s11223-014-9538-6
  35. Zhang, B.Y., Yu, X.J. and Kong, D.Z. (2013), "Particle size distribution and relative breakage for a cement ellipsoid aggregate", Comput. Geotech., 53, 31-39. https://doi.org/10.1016/j.compgeo.2013.04.007

Cited by

  1. A review on modelling and monitoring of railway ballast vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.195
  2. Numerical Simulation of Particle Breakage of Granular Assemblies in Discrete Element Analyses vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2048958
  3. Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests vol.23, pp.3, 2020, https://doi.org/10.12989/gae.2020.23.3.189
  4. An implicit nodal integration based PFEM for soil flow problems vol.142, pp.None, 2022, https://doi.org/10.1016/j.compgeo.2021.104571
  5. Discrete element simulation of effects of multicontact loading on single particle crushing vol.69, pp.None, 2016, https://doi.org/10.1016/j.partic.2021.11.012