DOI QR코드

DOI QR Code

Research on Silicon Nanowire Transistors for Future Wearable Electronic Systems

차세대 웨어러블 전자시스템용 실리콘 나노선 트랜지스터 연구

  • 임경민 (고려대학교 전기전자공학과) ;
  • 김민석 (고려대학교 전기전자공학과) ;
  • 김윤중 (고려대학교 전기전자공학과) ;
  • 임두혁 (고려대학교 전기전자공학과) ;
  • 김상식 (고려대학교 전기전자공학과)
  • Published : 2016.09.30

Abstract

In future wearable electronic systems, 3-dimensional (3D) devices have attracted much attention due to their high density integration and low-power functionality. Among 3D devices, gate-all-around (GAA) nanowire transistor provides superior gate controllability, resulting in suppressing short channel effect and other drawbacks in 2D metal-oxide-semiconductor field-effect transistor (MOSFET). Silicon nanowires (SiNWs) are the most promising building block for GAA structure device due to their compatibility with the current Si-based ultra large scale integration (ULSI) technology. Moreover, the theoretical limit for subthreshold swing (SS) of MOSFET is 60 mV/dec at room temperature, which causes the increase in Ioff current. To overcome theoretical limit for the SS, it is crucial that research into new types of device concepts should be performed. In our present studies, we have experimentally demonstrated feedback FET (FBFET) and tunnel FET (TFET) with sub-60 mV/dec based on SiNWs. Also, we fabricated SiNW based complementary TFET (c-TFET) and SiNW complementary metal-oxide-semiconductor (CMOS) inverter. Our research demonstrates the promising potential of SiNW electronic devices for future wearable electronic systems.

Keywords

References

  1. D. J. Frank, R. H. Dennard, E. Nowak and P. M. Solomon, Proc. IEEE 89, 259-288 (2001). https://doi.org/10.1109/5.915374
  2. M. Lee, Y. Jeon, J.-C. Jung, S.-M. Koo, and S. Kim, Applied Physics Letters 100, 253506 (2012). https://doi.org/10.1063/1.4729930
  3. J. T. Smith, S. Das, and J. Appenzeller, IEEE Electron Device Lett. 32, 1367 (2011). https://doi.org/10.1109/LED.2011.2162220
  4. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (2009), chap. 4.
  5. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, Tech. Dig. Of Symposium on VLSI Tech. 133 (2003).
  6. Y. Jeon, M. Kim, D. Lim, and S. Kim, ACS Nano 8, 3781-3787 (2014). https://doi.org/10.1021/nn500494a
  7. Y. Jeon, M. Kim, D. Lim, and S. Kim, Nano Letters 15, 4905-4913 (2015). https://doi.org/10.1021/acs.nanolett.5b00606
  8. Y. Khatami and K. Banerjee, IEEE Trans. Electron Devices 56, 2752 (2009). https://doi.org/10.1109/TED.2009.2030831
  9. M. Lee, Y. Jeon, T. Moon, and S. Kim, ACS Nano 5, 2629-2639 (2011). https://doi.org/10.1021/nn102594d
  10. M. Lee, Y. Jeon, M. Kim, and S. Kim, Journal of Applied Physics 117, 224502 (2015). https://doi.org/10.1063/1.4922354
  11. M. Lee, Y. Jeon, K. Son, J. Shim, and S. Kim, Phys. Status Solidi A 209, 1350-1358 (2012). https://doi.org/10.1002/pssa.201127767