DOI QR코드

DOI QR Code

온주밀감 '하례조생'과 '부지화' 과실의 착색 단계별 고온에 의한 성숙 관련 유전자의 발현 변화

Gene Expression as Related to Ripening in High Temperature during Different Coloration Stages of 'Haryejosaeng' and 'Shiranuhi' Mandarin Fruits

  • 안순영 (영남대학교 원예생명과학과) ;
  • 김선애 (영남대학교 원예생명과학과) ;
  • 문영일 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 윤해근 (영남대학교 원예생명과학과)
  • Ahn, Soon Young (Department of Horticulture and Life Science, Yeungnam University) ;
  • Kim, Seon Ae (Department of Horticulture and Life Science, Yeungnam University) ;
  • Moon, Young-Eel (Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yun, Hae Keun (Department of Horticulture and Life Science, Yeungnam University)
  • 투고 : 2016.04.18
  • 심사 : 2016.05.03
  • 발행 : 2016.10.31

초록

본 연구에서는 기후변화로 인한 온도상승에 따른 과실 착색 불량 등의 문제를 해결하는데 필요한 기초자료를 제공하고자 고온에 의해 과피에서 발현되는 유전자들의 발현 양상 특성을 분석하였다. '하례조생'과 '부지화' 감귤 과실을 숙기 별로 수확하여 온도 조건(25, 30, $35^{\circ}C$)을 처리하고 당대사, 과피 착색, 세포벽 연화에 관련된 유전자들의 발현을 확인하였다. 유전자들은 '하례조생'과 '부지화'에서 각각 다른 양상으로 발현하였는데, beta-amylase(BMY), phenylalanine ammonia-lyase(PAL), chalcone synthase(CHS), flavanone 3-hydroxylase(F3H) 등의 유전자 발현은 대체적으로 유도되었고, polygalacturonase(PG) 유전자는 발현이 감소되는 경향이었다. '하례조생'은 과피 착색과 관련된 유전자인 CHS와 F3H는 성숙이 진행된 2-3단계에서 $25^{\circ}C$에 비해 고온에서 유전자 발현이 감소하였으며, PAL과 stilbene synthase(STS) 유전자는 $25^{\circ}C$에 비해 $30-35^{\circ}C$ 처리구에서 유전자 발현이 증가하였다. 2-3단계의 '부지화'에서는 BMY 유전자가 $25^{\circ}C$에 비해 $30-35^{\circ}C$에서 유전자 발현이 증가하였으며, F3H와 STS 유전자의 발현은 과실 성숙단계에서 모두 감소하는 경향이었고 온도의 영향은 크지 않았다. 성숙 1, 2단계에서 유전자의 발현 양상은 두 품종 모두에서 대체로 비슷한 경향이었는데, 3단계에서 '부지화' 과실의 유전자 발현은 '하례조생'과는 다르게 감소하는 경향이었다. 성숙이 진행되는 감귤류인 '하례조생'에서 '부지화'에 비해 7종류의 유전자의 발현이 많았으며, 고온에 따른 반응의 차이도 크게 나타났다. 본 연구에서 도출한 결과를 바탕으로 과실의 전사체를 분석함으로써 고온에 의한 감귤 과실의 성숙불량 문제를 이해하는 주요한 정보를 획득할 수 있을 것이다

As high temperature during citrus growing season has caused a serious problems including inferior coloration in production of mandarins in Korea, we were to investigate the expression pattern of several genes related with coloration during the ripening in high temperature condition of citrus fruits. The expression of genes related with sugar metabolism, cell wall degradation, and flavonoid synthesis in high temperature conditions was investigated in fruits of 'Haryejosaeng' (Citrus unshiu) and 'Shiranuhi' mandarin (C. reticulata). While the expression of beta-amylase (BMY), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) was differently induced, expression of polygalacturonase (PG) decreased dependently on temperature conditions. In 'Haryejosaeng' mandarin, while the expression of genes related to the skin coloration, such as CHS and F3H genes increased at $25^{\circ}C$, the expression of PAL and stilbene synthase (STS) genes were induced at $30-35^{\circ}C$ in all ripening stages. In 'Shiranuhi' mandarin, the expression of the BMY gene decreased at early time point in all temperature condition and then increased at $30-35^{\circ}C$ than at $25^{\circ}C$ in the ripening stage 2 to 3 of fruits. F3H and STS genes also showed the tendency to decrease at $30-35^{\circ}C$. Although the expression levels of genes in ripening stage 1 and stage 2 of fruits showed similar patterns in both 'Haryejosaeng' and 'Shiranuhi', the expression levels of genes were down-regulated in late ripening stage of 'Shiranuhi' fruits compared to 'Haryejosaeng'. In general, the mRNA levels of seven tested genes were higher in 'Haryejosaeng' than in 'Shiranuhi' mandarin, and expression of genes by high temperature was regulated sensitively in 'Haryejosaeng' compared to 'Shiranuhi' mandarin. Further investigations of expression of various genes based on transcriptome analysis in early ripening stage can provide valuable information about the responses to climatic changes in ripening citrus fruits.

키워드

참고문헌

  1. Ahn SY, Kim SA, Choi SJ, Yun HK (2015) Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Hortic Environ Technol 56:6-43. doi:10.1007/s13580-015-0045-x
  2. Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080. doi:10.1007/s00425-012-1650-x
  3. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958-970. doi:10.1093/ pcp/pcm066
  4. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279-291. doi:10.1104/pp.105.073262
  5. Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059-1066. doi:10.1104/pp.111.4.1059
  6. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311-340. doi:10.1023/A:1010656104304
  7. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:113-116. doi:10.1007/BF02670468
  8. Cotroneo PS, Russo MP, Ciuni M, Reforgiato RG, Lo Piero AR (2006) Quantitative real time reverse transcriptase-PCR profiling of anthocyanin biosynthetic genes during orange fruit ripening. J Am Soc Hortic Sci 131:537-543
  9. Crifo T, Puglisi I, Petrone G, Recupero GR, Lo Piero AR (2011) Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway. Gene 476:1-9. doi:10.1016/j.gene.2011.02.005
  10. Davies FS, Tucker DPH (2006) Fruit quality. In DPH Tucker, JS Rogers, EW Stover, MR Ziegler, eds, Florida Citrus: A Comprehensive Guide. Univ of Florida, Gainesville, FL, pp 269-278
  11. Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, et al (2007) Food, fibre, and forest products. In ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson, eds, Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK, pp 273-313
  12. Feng SQ, Wang YL, Yang S, Xu YT, Chen XS (2010). Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription fact or PyMYB10. Planta 232:245-255. doi:10.1007/s00425-010-1170-5
  13. Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. Environ Intl 35:390-401. doi:10.1016/ j.envint.2008.07.007
  14. Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224-9233. doi:10.1074/jbc.273.15.9224
  15. Han SH, Kang JH (2011) Effect of water states of fruit vesicle and leaf on fruit quality in 'Trifoliate' orange and 'Swingle citrumelo' rootstock of 'Shiranuhi' [(Citrus unshiu $\times$ C. sinensis ) $\times$ C. reticulata ] mandarin hybrid, M16 A line in plastic film house cultivation. J Bio-Environ Cont 20:204-210
  16. Hara M, Wakasugi Y, Ikoma Y, Yano M, Ogawa K, Kuboi T (1999) cDNA sequence and expression of a cold-responsive gene in Citrus unshiu . Biosci Biotechnol Biochem 63:433-437. doi:10.1271/bbb.63.433
  17. Holland N, Nunes FLS, Medeiros IUD, Lafuentea MT (2012) High-temperature conditioning induces chilling tolerance in mandarin fruit: a cell wall approach. J Sci Food Agric 92:3039-3045. doi:10.1002/jsfa.5721
  18. Holland N, Menezes HC, Lafuentea MT (2002) Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of ''Fortune" mandarin fruit harvested at different maturity stages. Postharvest Biol Technol 25:181-191. doi:10.1016/S0925- 5214(01)00182-X
  19. Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955-962. doi:10.1016 /S0981-9428(02)01454-7 https://doi.org/10.1016/S0981-9428(02)01454-7
  20. Iglesias DJ, Cercos M, Colmenero-Flores JM, Naranjo MA, Rios G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, et al (2007) Physiology of citrus fruiting. Braz J Plant Physiol 19:333-362. doi:10.1590/S1677-04202007000400006
  21. Ismail MA, Brown GE (1979) Postharvest wound healing in citrus fruit: induction of phenylalanine ammonia-lyase in injured 'Valencia' orange flavedo. J Am Soc Hortic Sci 104:126-129
  22. Iwagaki I, Hirose K (1980) Fruit growth and acid content of satsuma mandarin in relation to flowering time. J Japan Soc Hort Sci 48:418-425. doi:10.2503/jjshs.48.418
  23. Izumi H, Ito T, Yoshida Y (1990) Changes in fruit quality of satsuma mandarin during storage, after harvest from exterior and interior canopy of trees. J Jpn Soc Hortic Sci 58:877-883. doi:10.2503/jjshs.58.877
  24. Kim CG, Moon DH (2012) Climate change countermeasures of Japan agriculture. World Agriculture No. 146. pp 1-16
  25. Kim SA, Ahn SY, Han HH, Son IC, Yun HK (2015a) Expression of genes affecting skin coloration and sugar accumulation in apple fruits at ripening stages in high temperatures. World J Eng Technol 3:7-12. doi:10.4236/wjet.2015.33B002
  26. Kim SA, Ahn SY, Son IC, Yun HK (2015b) Expression of genes related to skin coloration and sugar accumulation in grape berries at ripening stages under high temperatures. Adv Environ Res 87:25-31. doi:10.7763/IPCBEE
  27. KOSTAT (2014) Statistics Korea. http://kostat.go.kr/office/hnro/index.action, Accessed 22 Feb 2016
  28. Lee HC (1999) Physiological and ecological factors affecting fruit coloration and color enhancement in Malus domestica Borkh. cv. 'Fuji'. Ph D Thesis, Seoul National University, Seoul
  29. Lee S-H, Kim J-H, Jeong H-C, Koh J-S (2007) Changes in the quality of Hallabong Tangor (Citrus kiyomi $\times$ ponkan) with growth stage and temperature pretreatment conditions. Korean J Food Preserv 6:565-570
  30. Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagne D, Rowan DD, et al (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176-1190. doi:10.1111/ j.1365-3040.2011.02316.x
  31. Lo Piero AR, Consoli A, Puglisi I, Orestano G, Reforgiato RG, Petrone G (2005) Anthocyaninless cultivars of sweet orange lack to express the UDP-glucose flavonoid 3-O-glucosyl transferase. J Plant Biochem Biotechnol 14:1-6. doi:10.1007/BF03263217
  32. Lurie S (1998) Postharvest heat treatments. Postharvest Biol Technol 14:257-269. doi:10.1016/S0925-5214(98)00045-3
  33. Lurie S, Handros A, Fallik E, Shapira R (1996) Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol 110:1207-1214. doi:10.1104/pp.110.4.1207
  34. Mishra P, Dubey RS (2013) Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings. Biometals 26:97-111. doi:10.1007/s10534-012-9597-8
  35. Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) ${\beta}$-amylase1 and ${\beta}$-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol 166:1748-1763. doi:10.1104/pp.114.246421
  36. Moon DG, Ko SW, Han SG, Choi YH, Kim YH (2008) Sugar and acid contents in different portions of ‘Shiranuhi’ mandarin fruit as affected by water stress. J Korean Soc Hortic Sci 49:216-220
  37. Moon YE (2006) Effects of rootstock and temperature on the tree growth and fruit quality of 'Shiranuhi' mandarin hybrid in plastic film house. Ph D Thesis, Jeju National University, Jeju
  38. Moon YE, Kim CM (2001) Studies on investigation of factor and preventing of fruit splitting in satsuma mandarin in plastic film house. Bull Jeju Agr Exp Sta pp 162-175
  39. National Institute of Meteorological Sciences (NIMS) (2011) Climate change scenario reports 2011 to cope with Intergovernmental Panel on Climate Change (IPCC) 5th reports. pp 82
  40. Noro S, Ichinohe H, Obra N (1991) Effects of controlled air temperature on development of anthocyanin, sugar and citramalic acid during maturation of the apple cultivar Starking Delicious. Bull Aomori Apple Exp Sta 27:111-123
  41. Park SR, Paik JH, Ahn MS, Park JW, Yoon YJ (2010) Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae . J Microbiol Biotechnol 20:1295-1299. doi:10.4014/jmb.1005.05038
  42. Porat R, Pavoncello D, Lurie S, McCollum TG (2002) Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions. Physiol Plant 115:598-603. doi:10.1034/ j.1399-3054.2002.1150414.x
  43. Richter H, Pezet R, Viret O, Gindro K (2006) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola . Physiol Mol Plant Pathol 67:248-260. doi:10.1016/j.pmpp.2006.03.001
  44. Riov J (1975) A research note: polygalacturonase activity in citrus fruit. J Food Sci 40:201-202. doi:10.1111/j.1365- 2621.1975.tb03772.x
  45. Riov J, Monselise SP, Kahan RS (1968) Effect of gamma radiation on phenylalanine ammonia-lyase activity and accumulation of phenolic compounds in citrus fruit peel. Radiat Bot 8:463-466. doi:10.1016/S0033-7560(68)80108-5
  46. Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias A (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950-1957. doi:10.1021/jf035216+
  47. Sanchez-Ballesta MT, Zacarias L, Granell A, Lafuente MT (2000a) Accumulation of pal transcript and pal activity as affected by heatconditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. J Agric Food Chem 48:2726-2731. doi:10.1021/jf991141r
  48. Sanchez-Ballesta MT, Lafuente MT, Zacarias L, Granell A (2000b) Phenylalanine ammonia-lyase in the response of citrus fruits to cold temperature. Physiol Plant 108:382-389. doi:10.1034/j.1399-3054.2000.108004382.x
  49. Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ, Zacarias L, Granell A, Lafuente MT (2003) A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65-70. doi:10.1007/s00425-003-1086-4
  50. Shannon LM (1968) Plant isoenzymes. Ann Rev Plant Physiol 19:187-210. doi:10.1146/annurev.pp.19.060168.001155
  51. Son IC, Han J-H, Cho JG, Kim SH, Chang E-H, Oh SI, Moon K-H, Choi I-M (2014) Effects of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana ). Korean J Hortic Sci Technol 32:781-787. doi:10.7235/hort.2014.13059
  52. Song KJ, Kim SB, Park JH, Oh EU, Lee K, Kim DW, Kang J-H, Kim J-S, Oh JH, et al (2011) Frequency and growth characteristics of polyploids occurred spontaneously in some mandarin hybrids. Korean J Hortic Sci Technol 29:617-622
  53. Sugiura S, Yokozawa M (2004) Impact of global warming on environment for apple and Satsuma mandarin production estimated from change of the annual mean temperature. J Jpn Soc Sci 73:72-78. doi:10.2503/jjshs.73.72
  54. Sugiura S, Sumida H, Yokoyama S, Ono H (2012) Overview of recent effects of global warming on agricultural production in Japan. Jpn Agric Res Q 46:7-13. doi:10.6090/jarq.46.7
  55. Sun P, Mantri N, Lou H, Hu Y, Sun D, Zhu Y, Dong T, Lu H (2012) Effects of elevated $CO_2$ and temperature on yield and fruit quality of strawberry (Fragaria $\times$ ananassa Duch.) at two levels of nitrogen application. PLoS ONE 7:e41000. doi:10.1371/ journal.pone.0041000
  56. Ubi BU, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571-578. doi:10.1016/j.plantsci.2005.10.009
  57. Utsunomiya N, Yamada H, Kataoka I, Tomana T (1982) The effect of fruit temperatures on the maturation of satsuma mandarin (Citrus unshiu Marc.) fruits. J Jpn Soc Hortic Sci 51:135-141 (In Japanese). doi:10.2503/jjshs.51.135
  58. Wang Y, Li J, Xia RX (2010) Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No.4 satsuma (Citrus unshiu Marcow). Sci Hortic 125:110-116. doi:10.1016/ j.scienta.2010.02.001
  59. Xie R, Zheng L, He S, Zheng Y, Yi S, Deng L (2011) Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation. Afr J Biotechnol 10:19890-19897. doi:10.5897/AJBX11.028
  60. Xu M, Li Y, Zheng Z, Dai Z, Tao Y, Deng X (2015) Transcriptional analyses of mandarins seriously infected by 'Candidatus Liberibacter asiaticus'. PLoS ONE 10:e0133652. doi:10.1371/journal.pone.0133652
  61. Yang NS, Scandalios JG (1974) Purification and biochemical properties of genetically defined malate de-hydrogenase in maize. Arch Biochem Biophys 161:335-353. doi:10.1016/0003-9861(74)90314-2
  62. Yudina RS (2012) Malate dehydrogenase in plants: Its genetics, structure, localization and use as a marker. Adv Biosci Biotechnol 3:370-377. doi:10.4236/abb.2012.34053
  63. Zekri M (2011) Factors affecting citrus production and quality. Citrus industry, December, pp 6-95