DOI QR코드

DOI QR Code

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities

화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구

  • Sakamoto, Masaki (Department of Environmental Engineering, Toyama Prefectural University) ;
  • Mano, Hiroyuki (Water Environment Research Group, Public Works Research Institute) ;
  • Hanazato, Takayuki (Institute of Mountain Science, Shinshu University) ;
  • Chang, Kwang-Hyeon (Center for Environmental Studies, Department of Environmental Science and Engineering, Kyung Hee University)
  • Received : 2016.08.17
  • Accepted : 2016.09.30
  • Published : 2016.09.30

Abstract

Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.

화학물질의 유입은 수생생태계에 유해한 영향을 미치는 주요 인자 중의 하나로, 수생태계에 미치는 화학물질의 영향을 보다 정확하게 평가하기 위해서는 서로 다른 영양단계의 생물군집들의 생물학적 상호작용을 고려한 군집 수준의 독성시험이 요구된다. 하지만 현재 제시되고 있는 마이크로코즘 및 메소코즘을 이용한 군집 수준의 독성평가 시험 방법은 너무 복잡하고, 기존의 종 수준에서 얻어진 정보와의 직접적 비교가 어렵다. 본 연구에서는 독성시험 표준 생물인 녹조류 Pseudokirchneriella subcapitata와 물벼룩 Daphnia magna를 이용하여 화학물질의 독성을 생산자와 소비자의 상호작용을 고려한 군집 수준에서 평가할 수 있는 간단한 bi-trophic 마이크로코즘 시험 방법과 이에 대한 생물군집의 적정 조건을 제시하고자 하였다. 마이크로코즘 시험계 및 물벼룩 배양의 경우, $5{\times}10^5cells\;mL^{-1}$ 이상의 P. subcapitata (생산자) 농도를 설정하는 것이 적절할 것으로 분석되었다. 장기 독성시험을 고려할 경우, 물벼룩 (소비자)은 태어난 지 24시간이 되지 않은 미성숙 개체로 구성하여 마이크로코즘 시험을 시작하면 성체 및 혼합 개체군이 보다 안정적으로 유지되는 것으로 나타났다. 이와 같은 bi-trophic 마이크로코즘 시험계는 오염원에 의한 생산자-소비자의 생물학적 상호작용의 교란 정도를 평가하고, 수생태계에 대한 위험요소평가를 종 수준의 평가에서 군집수준의 평가로 확대할 수 있는 적절한 시험 방법으로 판단된다.

Keywords

References

  1. Amiard-Triquet, C., J.C. Amiard and C. Mouneyrac. 2015. Aquatic Ecotoxicology: advancing tools for dealing with emerging risks. Academic Press, New York, USA.
  2. Bredeson, M.M., R.N. Reese and J.G. Lundgren. 2015. The effects of insecticide dose and herbivore density on tritrophic effects of thiamethoxam in a system involving wheat, aphids, and ladybeetles. Crop Protection 69: 70-76. https://doi.org/10.1016/j.cropro.2014.12.010
  3. EFSA PPR Panel. 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edgeof- field surface waters. EFSA J 11: 3290, 268 pp. https://doi.org/10.2903/j.efsa.2013.3290
  4. Fleeger, J., K.R. Carman and R.M. Nisbet. 2003. Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317: 207-233. https://doi.org/10.1016/S0048-9697(03)00141-4
  5. Gao, C., K.A.C. De Schamphelaere and E. Smolders. 2016. Zinc toxicity to the alga Pseudokirchneriella subcapitata decreases under phosphate limiting growth conditions. Aquatic Toxicology 173: 74-82. https://doi.org/10.1016/j.aquatox.2016.01.010
  6. Iwabuchi, T. and J. Urabe. 2012. Competitive outcomes between herbivorous consumers can be predicted from their stoichiometric demands. Ecosphere 3: 7.
  7. Kilham, S.S., D.A. Kreeger, S.G. Lynn, C.E. Goulden and L. Herrera. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377: 147-159. https://doi.org/10.1023/A:1003231628456
  8. Muller-Navarra, D. and W. Lampert. 1996. Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. Journal of Plankton Research 18: 1137-1157. https://doi.org/10.1093/plankt/18.7.1137
  9. Murdoch, W.W., R.M. Nisbet, E. McCauley, A.M. deRoos and W.S.C. Gurney. 1998. Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79: 1339-1356. https://doi.org/10.1890/0012-9658(1998)079[1339:PAADAN]2.0.CO;2
  10. Nagai, T. 2016. Ecological effect assessment by species sensitivity distribution for 68 pesticides used in Japanese paddy fields. Journal of Pesticide Science 41: 6-14. https://doi.org/10.1584/jpestics.D15-056
  11. Nandini, S. and S.S.S. Sarma. 2003. Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia 491: 211-219. https://doi.org/10.1023/A:1024410314313
  12. Nebeker, A.V., S.E. Dominguez, G.A. Chapman, S.T. Onjukka and D.G. Stevens. 1992. Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus. Environmental Toxicology and Chemistry 11: 373-379. https://doi.org/10.1002/etc.5620110311
  13. OECD. 2004. OECD guidelines for testing of chemicals, no. 202: Daphnia sp., acute immobilization test. OECD, Paris.
  14. OECD. 2011. OECD guidelines for testing of chemicals, no. 202: Freshwater alga and cyanobacteria, growth inhibition test. OECD, Paris.
  15. OECD. 2012. OECD guidelines for testing of chemicals, no. 211: Daphnia magna reproduction test. OECD, Paris.
  16. R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project. org/. Accessed 4 July 2016.
  17. Rosenzweig, M.L. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171: 385-387. https://doi.org/10.1126/science.171.3969.385
  18. Roy, S. and J. Chattopadhyay. 2007. The stability of ecosystems: a brief overview of the paradox of enrichment. Journal of Biosciences 32: 421-428. https://doi.org/10.1007/s12038-007-0040-1
  19. Sakamoto, M. and J.Y. Ha. 2013. Importance of comprehension at aquatic food web for conducting ecological risk assessment. Japanese Journal of Environmental Toxicology 16: 49-57. (in Japanese)
  20. US EPA. 1996. Ecological effects test guidelines. OPPTS 850. 1900. Generic freshwater microcosm test, laboratory. EPA 712-C-96-134.
  21. Van Wijngaarden, R.P., L. Maltby and T.C. Brock. 2014. Acute tier-1 and tier-2 effect assessment approaches in the EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides? Pest Management Science 71: 1059-1067.
  22. Verschoor, A.M., M. Vos and I. van der Stap. 2004. Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecology Letters 7: 1143-1148. https://doi.org/10.1111/j.1461-0248.2004.00675.x
  23. Welch, K.D. and J.G. Lundgren. 2016. An exposure-based, ecology- driven framework for selection of indicator species for insecticide risk assessment. Food Webs (in press) available at http://dx.doi.org/10.1016/j.fooweb.2016.02.004