References
- Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, Elsevier, North-Holland, Amsterdam, The Netherlands.
- Atwa, S.Y. and Jahangir, A. (2014), "Two temperature effects on plane waves in generalized thermomicrostretch elastic solid", Int. J. Thermophys., 35(1), 175-193. https://doi.org/10.1007/s10765-013-1541-9
- Boley, B.A. and Tolins, I.S. (1962), "Transient coupled thermoelastic boundary value problem in the half space", J. Appl. Mech., 29(4), 637-646. https://doi.org/10.1115/1.3640647
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two parameters", Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on simple heat conduction", J. Appl. Math. Phys. (ZAMP), 19(6), 969-970. https://doi.org/10.1007/BF01602278
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non simple elastic materials with two temperatures", J. Appl. Math. Phys. (ZAMP), 20(1), 107-112. https://doi.org/10.1007/BF01591120
- Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress., 37(4), 405-428. https://doi.org/10.1080/01495739.2013.870847
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustance Publisher Corp., New Delhi, India, 726 p.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of Royal Soc. A - London Ser., 432(1885), pp. 171-194.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Kaushal, S., Sharma, N. and Kumar, R. (2010), "Propagation of waves in generalized thermoelastic continua with two temperature", Int. J. Appl. Mech. Eng., 15(4), 1111-1127.
- Kaushal, S., Kumar, R. and Miglani, A. (2011), "Wave propagation in temperature rate dependent thermoelasticity with two temperatures", Math. Sci., 5(2), 125-146.
- Keith, C.M. and Crampin, S. (1977), "Seismic body waves in anisotropic media, reflection and refraction at a plane interface", Geophys. J. R. Astr. Soc., 49(1), 181-208. https://doi.org/10.1111/j.1365-246X.1977.tb03708.x
- Kumar, R. (2015), "Wave propagation in a microstretch thermoelastic diffusion solid", VERSITA, 23(1), 127-169.
- Kumar, R. and Gupta, V. (2013), "Plane wave propagation in an anisotropic thermoelastic medium with fractional order derivative and void", J. Thermoelast., 1(1), 21-34.
- Kumar, R. and Kansal, T. (2011), "Reflection of plane waves at the free surface of a transversely isotropic thermoelastic diffusive solid half-space", Int. J. Appl. Math. Mech., 7(14), 57-78.
- Kumar, R. and Mukhopdhyay, S. (2010), "Effects of thermal relaxation times on plane wave propagation under two temperature thermoelasticity", Int. J. Eng. Sci., 48(2), 128-139. https://doi.org/10.1016/j.ijengsci.2009.07.001
- Kumar, R., Sharma, N. and Ram, P. (2008), "Reflection and transmission of micropolar elastic waves at an imperfect boundary", Multidiscipl. Model. Mater. Struct., 4(1), 15-36. https://doi.org/10.1163/157361108783470388
- Lee, J. and Lee, S. (2010), "General solution of EM wave propagation in anisotropic media", J. Kor. Phys. Soc., 57(1), 55-60. https://doi.org/10.3938/jkps.57.55
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus, Acad. Sci. Paris, Serie II, 321(12), 475-480.
- Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comp. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9
- Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045
- Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0
- Othman, M.I.A. (2010), "Generalized Electro-Magneto-Thermoelasticity in case of thermal shock wavesfor a finite conducting half-space with two relaxation times", Mech. Mech. Eng., 14(1), 5-30.
- Sharma, K. and Bhargava, R.R. (2014), "Propagation of thermoelastic plane waves at an imperfect boundary of thermal conducting viscous liquid/generalized thermolastic solid", Afrika Mathematika, 25(1), 81-102. https://doi.org/10.1007/s13370-012-0099-1
- Sharma, K. and Kumar, P. (2013), "Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids", J. Therm. Stress., 36(2), 94-111. https://doi.org/10.1080/01495739.2012.720545
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", U.P.B. Sci. Bull Series, 75(2), 121-132.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013), "Effect of viscousity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III", Mater. Phys. Mech., 16(2), 144-158.
- Singh, S.S. and Krosspanie, L. (2013), "Phase velocity of harmonic waves in monoclinic anisotropic medium", Sci. Vis., 13(3), 133-136.
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
- Warren, W.E. and Chen, P.J. (1973), "Wave propagation in the two temperature theory of thermoelasticity", J. Acta Mech., 16(1), 21-33. https://doi.org/10.1007/BF01177123
- Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
- Youssef, H.M. (2011), "Theory of two - temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34(2), 138-146. https://doi.org/10.1080/01495739.2010.511941
- Zakaria, M. (2014), "Effect of hall current on generalized magneto thermoelastic micropolar solid subjected to ramp type heating", Int. Appl. Mech., 50(1), 92-104. https://doi.org/10.1007/s10778-014-0615-0
Cited by
- Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity 2017, https://doi.org/10.1007/s00542-017-3643-y
- On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4194-6
- Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3917-z
- Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories vol.24, pp.3, 2017, https://doi.org/10.12989/scs.2017.24.3.297
- A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.177
- Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.113
- Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.439
- Scattering of torsional surface waves in a three layered model structure vol.68, pp.4, 2018, https://doi.org/10.12989/sem.2018.68.4.443
- Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources vol.8, pp.5, 2016, https://doi.org/10.12989/csm.2019.8.5.415
- Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid vol.70, pp.2, 2016, https://doi.org/10.12989/sem.2019.70.2.245
- Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source vol.8, pp.2, 2016, https://doi.org/10.12989/amr.2019.8.2.083
- Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.219
- Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer vol.42, pp.10, 2019, https://doi.org/10.1080/01495739.2019.1623734
- Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2016, https://doi.org/10.12989/csm.2019.8.6.501
- Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity vol.73, pp.6, 2016, https://doi.org/10.12989/sem.2020.73.6.725
- Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory vol.36, pp.3, 2016, https://doi.org/10.12989/scs.2020.36.3.249
- Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
- Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources vol.9, pp.4, 2016, https://doi.org/10.12989/csm.2020.9.4.343
- Eigenfunction approach to generalized thermo-viscoelasticity with memory dependent derivative due to three-phase-lag heat transfer vol.43, pp.9, 2016, https://doi.org/10.1080/01495739.2020.1770642
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2016, https://doi.org/10.12989/mwt.2020.11.6.399
- Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
- Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2016, https://doi.org/10.12989/amr.2020.9.4.289
- Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039
- Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.447
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.523
- Absorption illumination of a 2D rotator semi-infinite thermoelastic medium using a modified Green and Lindsay model vol.26, pp.None, 2016, https://doi.org/10.1016/j.csite.2021.101165
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2016, https://doi.org/10.12989/scs.2021.40.4.511