DOI QR코드

DOI QR Code

Home-based OD Matrix Production and Analysis Using Mobile Phone Data

이동통신 자료를 활용한 가정기반 OD 구축 및 분석

  • Kim, Kyoungtae (Green Transport and Logistics Institute, Korea Railroad Research Institute) ;
  • Oh, Dongkyu (Green Transport and Logistics Institute, Korea Railroad Research Institute) ;
  • Lee, Inmook (Green Transport and Logistics Institute, Korea Railroad Research Institute) ;
  • Min, Jae Hong (Green Transport and Logistics Institute, Korea Railroad Research Institute)
  • Received : 2016.07.18
  • Accepted : 2016.08.22
  • Published : 2016.10.31

Abstract

Based on time dependent location data of mobile phone users, users' ODs were produced after tracing their travel route and inducing their origins and destinations. System considered average signalizing frequency, which means that the longer the travel length is the more frequent the signal is. This is a home-based OD and is limited to the Seoul Metropolitan area. The OD matrix from the mobile phone data which was aggregated to the cell and transformed to the 'Dong' area, was compared to the KTDB OD. The results can be analyzed and it was determined that they are highly correlated because individual coefficients are 0.98 and 0.85, the former between the OD of this study and the KTDB Si/Gun/Gu unit area OD and the latter between the OD of this study and the Dong unit area KTDB OD.

본 연구에서는 휴대전화 이용자의 시간대별 기지국 위치정보를 기반으로 하여 이용자의 이동경로를 추적하고, 기/종점을 추출하여 OD를 구축하였다. OD 구축시 통행거리가 길어질수록 통신횟수가 많아짐을 고려하여 통행거리별 평균통신횟수를 산출/반영하였고, 가정기반 통행만을 대상으로 수도권 중심의 OD를 구축하였다. 셀 단위로 집계된 휴대전화 자료를 법정동 단위로 변환하고, 이를 행정동 단위로 변환하여 본 연구에서 구축한 OD를 KTDB OD와 비교분석 한 결과, 시/군/구 단위 OD와 동 단위 OD의 상관계수는 각각 0.98, 0.85로 나타나 상당한 연관성이 있는 것으로 분석되었다.

Keywords

References

  1. http://www.msip.go.kr (Accessed 18 April 2016).
  2. http://kosis.kr (Accessed 18 April 2016).
  3. K. Kim, I. Lee, J.H. Min, H. Kwak (2015) Trip generation analysis using mobile phone data, Journal of the Korean Society for Railway, 19(5), pp. 481-488.
  4. S. Kim, B. Yoo, S. Kang (2005) Origin-Destination estimation based on cellular phone's base station, Journal of Korean Society of Transportation, 23(1), pp. 93-102.
  5. F. Calabrese, G.D. Lorenzo, L. Liu, C. Ratti (2011) Estimating origin-destination flows using mobile phone location data, IEEE CS Pervasive Computing, October-December 2011, 4(10), pp. 36-44.
  6. P. Wang, T. Hunter, A.M. Bayan, K. Schectner, M.C. Gonzalez (2012) Understanding road usage patterns in urban areas, Scientific Reports, 2, pp. 1-6.
  7. M.S. Iqbal, C.F. Choudhury, P. Wang, M.C. Gonzalez (2014) Development of origin-destination matrices using mobile phone call data, Transportation Research Part C, 40, pp. 63-74. https://doi.org/10.1016/j.trc.2014.01.002
  8. S. Jiang, Y. Yang, G. Fiore, E.Jr.J.F. Frazzoli, M. Gonzalez (2013) A review of urban computing for mobile phone traces: current methods, challenges and opportunities. Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Chicago, Illinois, pp. 1-9.
  9. H.S. Schneider, S.V. Ukkusuri, M.C. Gonzalez (2013) Spatiotemporal patterns of urban human mobility, Journal of Statistical Physics, 151(304), pp. 151. https://doi.org/10.1007/s10955-012-0645-0