DOI QR코드

DOI QR Code

Fine-scale Spatial Genetic Structure of a Small Natural Stand of Populus davidiana in South Korea using AFLP markers

AFLP 마커를 이용한 소규모 사시나무림의 공간적 유전구조 구명

  • Lee, Min Woo (Forest Genetic Resources Division, National Institute of Forest Science) ;
  • Hong, Kyung Nak (Forest Genetic Resources Division, National Institute of Forest Science) ;
  • Park, Yu Jin (Forest Genetic Resources Division, National Institute of Forest Science) ;
  • Lee, Jei Wan (Forest Genetic Resources Division, National Institute of Forest Science) ;
  • Lim, Hyo In (Forest Genetic Resources Division, National Institute of Forest Science)
  • 이민우 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 박유진 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 임효인 (국립산림과학원 산림유전자원과)
  • Received : 2016.06.14
  • Accepted : 2016.07.14
  • Published : 2016.09.30

Abstract

A locally adapted plant population under harsh environmental changes might survive for a long generation through maintaining proper level of genetic diversity. When it happens losing the genetic diversity too much fast, the population could be declining and probably become extinct. An isolated small population of Populus davidiana was investigated to study out the genetic diversity and the fine-scale spatial genetic structure. The estimated number of adult trees in the population of Mt. Worak, South Korea, was 350 in the total area of $14,000m^2$. The number of adults in a study plot ($70m{\times}70m$) was 123. The average age was 16-year-old and a 32-year-old tree was the oldest. The distribution of individuals was slightly aggregated in the plot. Sixty-one among the 123 individuals were randomly sampled to estimate genetic variation using AFLP markers. One hundred fifty-one (77%) of total 196 amplicons were polymorphic from six AFLP primer combinations. The average number of loci per primer combination was 32.7 (S.D.=7.2). Expected heterozygosity ($H_e$) and Shannon's diversity index (S.I.) were 0.154 and 0.254, respectively. These values were extremely lower than those of other P. davidiana populations in South Korea. Genetic patchiness was showed within 21 meters by spatial autocorrelation analysis and the isolated small size of population might be mainly attributed to the formation of such small patch size.

변화하는 자연환경에서 식물이 생존하기 위해서는 적절한 유전다양성을 유지할 뿐 아니라 지역적응성을 갖추어야 세대를 성공적으로 이어나갈 수 있다. 만약 유전다양성이 급격히 감소하게 된다면 집단이 쇠퇴하고 소멸 위험성이 커지게 된다. 본 연구는 주변 집단으로 부터 화분이나 종자의 유입이 어려운 소규모 사시나무 집단의 유전구조를 구명하였다. 월악산 미륵리의 사시나무림은 전체 분포면적 $14,000m^2$에 성목은 350개체로 추정되며, 임분내에 설정한 $70m{\times}70m$ 조사구에 출현하는 123개체 중 61개체를 대상으로 AFLP 마커를 이용하여 유전변이를 분석하였다. 조사구내 사시나무의 수령은 평균 16년 최고 32년생이었으며, 개체의 공간적 분포는 약한 밀집 형태를 이루고 있었다. AFLP primer 6조합에서 196개 증폭산물을 확인하였으며, 이 중 151개는 다형성을 보였다. primer 조합당 평균 유전자좌수는 32.7(표준편차=7.2), 이형접합도 기대치($H_e$)는 0.154, Shannon의 다양성 지수(S.I.)는 0.254로 나타나서, 월악산 사시나무는 우리나라 사시나무 집단 평균에 비하여 매우 낮은 유전다양성을 갖고 있는 것으로 나타났다. 공간적 유전구조는 24 m 이내에서 분포하는 개체들 간에 유전적 유사성이 나타났으며, 소규모 면적과 고립된 분포지 특성으로 인하여 비교적 작은 유전군락이 형성된 것으로 생각된다.

Keywords

References

  1. Booy, G., Hendriks, R.J.J., Smulders, M.J.M., Groenendael, J.V., and Vosman, B. 2000. Genetic diversity and the survival of populations. Plant Biology 2(4): 379-395. https://doi.org/10.1055/s-2000-5958
  2. Bradshaw, H.D., Ceulemans, R., Davis, J., and Stettler, R. 2000. Emerging model systems in plant biology: poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation 19(3): 306-313. https://doi.org/10.1007/s003440000030
  3. Cervera, M.T., Storme, V., Soto, A., Ivens, B., Van Montagu, M., Rajora, O.P., and Boerjan, W. 2005. Intraspecific and interspecific genetic and phylogenetic relationships in the Genus Populus based on AFLP markers. Theoretical and Applied Genetics 111(7): 1440-1456. https://doi.org/10.1007/s00122-005-0076-2
  4. Chang, C.S., Kim, H., and Chang, K.S. 2011. Illustrated Encyclopedia of Fauna and Flora of Korea. Design Post. Gyeonggido, Republic of Korea. pp. 510.
  5. Choi, G.Y., Kang, Y.M., Moon, B.C., and Kim, H.Y. 2013. A comparative study about the origins of crude drugs in the northeast asian pharmacopoeias: centered on same name of materials but different genus. Korea Journal of Herbology 28(5): 103-111. https://doi.org/10.6116/kjh.2013.28.5.103
  6. Clark, P.J., and Evans, F,C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4): 445-453. https://doi.org/10.2307/1931034
  7. Ellstrand, N.C. and Elam, D.R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  8. Epperson, B.K. 1992. Spatial structure of genetic variation within populations of forest trees. New Forests 6(1): 257-278. https://doi.org/10.1007/BF00120648
  9. Fossati, T., Patrignani, G., Zapelli, I., Sabatti, M., Sala, F., and Castiglione, S. 2004. Development of molecular markers to assess the level of introgression of Populus tremula into P. alba natural populations. Plant Breeding 123(4): 382-385. https://doi.org/10.1111/j.1439-0523.2004.00979.x
  10. Han, S.U., Kim, C.S., Kang, K.S., and Oh, C.Y. 2007. Management of Seed Orchard for the Production of Improved Seeds. National Institute of Forest Science. Suwon, Republic of Korea. pp. 256.
  11. Hedrick, P.W. and Kalinowski, S.T. 2000. Inbreeding depression in conservation biology. Annual Review of Ecology and Systematics 31: 139-162. https://doi.org/10.1146/annurev.ecolsys.31.1.139
  12. Hong, K.N. 1997. Molecular Phylogeny of Section Leuce and Genetic Variation of Natural Pouplations of Populus davidiana in Korea Based on RAPD Marker Analysis. Ph.D dissertation. Seoul National University, Republic of Korea. pp. 88.
  13. Jang, C.S., Yang, S.G., Jang, H.D., Lee, R.Y., Park, M.S., Kim, K.H., and Oh, B.U. 2015. Floristic study of Woraksan National Park in Korea. Korean Journal of Plant Resources 28(1): 35-63. https://doi.org/10.7732/kjpr.2015.28.1.035
  14. Kang, H.K., Back, S.J., and Kim, S.H. 2013. Vegetation structure and management planning of Yonghagugok in Woraksan National Park. Korean Journal of Environment and Ecology 27(4): 487-497.
  15. Kim, D.K. 2009. A study on the development of wooden furniture used with dyed glued laminated wood. Journal of the Korea Furniture Society 20(1): 82-94.
  16. Lande, R. and Shannon, S. 1996. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50(1): 434-437. https://doi.org/10.2307/2410812
  17. Leimu, R. and Fischer, M. 2008. A meta analysis of local adaptation in plants. Plos One 4(12): 4010.
  18. Lee, K.M., Kim, Y.Y., and Chung J.M. 2009. Genetic diversity of natural populations of Populus maximowiczii Henry in Korea based on microsatellite marker analysis. pp. 129-138. In: Korean Forest Society. Proceedings of Korean Forest Society. Dongguk University. Seoul, Republic of Korea.
  19. Lee, K.M., Kim, Y.Y., and Jung, O.H. 2011. Genetic variation in populations of Populus davidiana Dode based on microsatellite marker analysis. Genes and Genomics 33(2): 163-171. https://doi.org/10.1007/s13258-010-0148-9
  20. Lee, J.Y., Oh, J.G., Jung, S.H., and Kim, H.S. 2015a. Community distribution on mountain forest vegetation of the Geumsusan and Doraksan area in the Worak National Park. Korean Journal of Ecology and Environment 48(2): 129-138. https://doi.org/10.11614/KSL.2015.48.2.129
  21. Lee, J.Y., Oh, J.G., Jang, I.S., and Kim, H.S. 2015b. Community distribution on mountain forest vegetation of the Youngbong area in the Worak National Park. Korean Journal of Ecology and Environment 48(1): 51-60. https://doi.org/10.11614/KSL.2015.48.1.051
  22. Mba, C. and Tohme, J. 2005. Use of AFLP markers in surveys of plant diversity. Methods in Enzymology 395: 177-201. https://doi.org/10.1016/S0076-6879(05)95012-X
  23. Meudt, H.M. and Clarke, A.C. 2007. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science 12(3): 106-117. https://doi.org/10.1016/j.tplants.2007.02.001
  24. Mariette, S., Chagne, D., Lezier, C., Pastuszka, P., Raffin, A., Plomion, C., and Kremer, A. 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86(4): 469-479. https://doi.org/10.1046/j.1365-2540.2001.00852.x
  25. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13(5): 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  26. Noh E.R., Lee S.K., Koo Y.B., and Byun K.O. 1994. Heritability and genetic gain of height in Populus davidiana in 4 year old clonal test. Journal of Korean Forest Society 83(2): 239-245.
  27. Noh, E.R., Lee, S.K., Koo, Y.B., and Hong, R.P. 1989. Growth patterns and variation of some economic characteristics in selected Korean aspen (Populus davidiana Dode). pp. 11-29. In: Forest Genetics Research Institute. Research Report of the Forest Genetics Research Institute. Suwon. Kyonggido, Republic of Korea.
  28. Peng, Y.H., Lu, Z.X., Chen, K., Luukkanen, O., Korpelainen, H., and Lu, C.Y. 2005. Population genetic survey of Populus cathayana originating from southeastern Qinghai Tibetan plateau of China based on SSR markers. Silvae Genetica 54(3): 116-122. https://doi.org/10.1515/sg-2005-0018
  29. Reed, D.H. and Frankham, R. 2003. Correlation between fitness and genetic diversity. Conservation Biology 17(1): 230-237. https://doi.org/10.1046/j.1523-1739.2003.01236.x
  30. Rathmacher, G., Niggemann, M., Kohnen, M., Ziegenhagen., and Bialozyt, R. 2009. Short distance gene flow in Populus nigra L. accounts for small scale spatial genetic structures: implications for in situ conservation measures. Conservation Genetics 11(4): 1327-1338. https://doi.org/10.1007/s10592-009-9961-6
  31. Ripley, B.D. 1981. Spatial Statistics: Wiley Series in Probability and Mathematical Statistics. Wiley Interscience. New York, U.S.A. pp. 272.
  32. Shin, S.K., Song, J.H., Lim, H.I., Jang, K.H., Hong, K.N., and Lee, J.W. 2014. Genetic diversity and spatial genetic structure of Populus koreana population in Mt. Odae, Korea. Journal of Korean Forest Society 103(1): 59-64. https://doi.org/10.14578/jkfs.2014.103.1.59
  33. Smouse, P.E. and Peakall, R. 1999. Spatial autocorrelation analysis of individual multiallele and mutlilocus genetic structure. Heredity 82: 561-573. https://doi.org/10.1038/sj.hdy.6885180
  34. Ueno, S., Aoki, K., and Tsumura, Y. 2009. Generation of expressed sequence tags and development of microsatellite markers for Castanopsis sieboldii var. sieboldii (Fagaceae). Annals of Forest Science 66(5): 1-21.