DOI QR코드

DOI QR Code

Effects of CaCl2 on Gas Exchange and Stomatal Responses in the Leaves of Prunus serrulata

염화칼슘이 벚나무 잎의 가스교환 및 기공반응에 미치는 영향

  • Je, Sun Mi (Forest Ecology Division, National Institute of Forest Science) ;
  • Kim, Sun Hee (Forest Ecology Division, National Institute of Forest Science)
  • 제선미 (국립산림과학원 산림생태연구과) ;
  • 김선희 (국립산림과학원 산림생태연구과)
  • Received : 2016.03.17
  • Accepted : 2016.07.19
  • Published : 2016.09.30

Abstract

To investigate the effect of calcium chloride ($CaCl_2$) using for deicing salts in winter on gas exchange and stomatal responses of 3-year-old Prunus serrulata, we treated twice (1 L) $CaCl_2$ solution (0.5%, 1.0% and 3.0%) in the root zone before leaf unfolding. Stomatal conductance ($g_s$), photosynthetic rate ($P_n$), transpiration rate ($T_r$) and water use efficiency (WUE) in the leaves of P. serrulata were decreased with increasing of $CaCl_2$ concentration. Even though stomatal conductance and photosynthetic rate were reduced by $CaCl_2$, intercellular $CO_2$ concentration ($C_i$) in $CaCl_2$ treatments has similar or higher values compared with control. These results suggest that non-stomatal limitation as well as stomatal limitation induced the reduction of photosynthetic rate together. On the other hands, treatment of $CaCl_2$ before leaf unfolding also affected leaf morphology traits. We proposed that reductions of stomatal length and leaf size and high pore density with increasing salinity is adaptative mechanism to reduce the water loss in plant.

겨울철 제설제로 사용하는 염화칼슘에 의한 3년생 벚나무 잎의 가스교환 및 기공반응에 대해 알아보기 위해 개엽 전 염화칼슘 0.5%, 1.0%, 3.0% 수용액을 2회(1 L) 근권부에 처리하였다. 염화칼슘 처리 농도가 증가함에 따라 벚나무의 기공전도도($g_s$), 광합성율($P_n$), 증산율($T_r$), 그리고 수분이용효율(WUE)은 감소하였다. 염화칼슘 처리에 의해 기공전도도와 광합성율이 감소하였음에도 불구하고 엽육세포 내 $CO_2$ 농도($C_i$)가 대조구와 비슷하거나 높게 나타났다. 이러한 결과는 기공제한 뿐만 아니라 비기공제한 요인도 함께 광합성율의 감소를 야기하였다는 것을 의미한다. 한편, 벚나무의 개엽 전 염화칼슘 처리는 잎의 형태적 특징에도 영향을 주었다. 염분농도가 증가할수록 기공의 길이가 작아지고 기공밀도가 높게 나타났으며 잎의 크기가 작아졌는데, 이는 식물체 내 수분손실을 줄이기 위한 적응기작으로 판단된다.

Keywords

References

  1. Abbruzzese, G., Beritognolo, I., Muleo, R., and Piazzai, M. 2009. Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany 66: 381-388. https://doi.org/10.1016/j.envexpbot.2009.04.008
  2. Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., and Murata, N. 2000. Ionic and osmotic effects of NaClinduced in activation of photosystem Ι and $\Pi$ in Synechococcus sp. Plant Physiology 123: 1047-1056. https://doi.org/10.1104/pp.123.3.1047
  3. Ceulemans, R. and Mousseau, M. 1994. Tansley review no 71. Effects of elevated atmospheric $CO_2$ on woody plants. New Phytologist 127: 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
  4. Czerniawska-Kusza, I., Kusza, G., and Duzynski, M. 2004. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environmental Toxicology 19(4): 296-301. https://doi.org/10.1002/tox.20037
  5. Debez, A., Koyro, H.-W., Grignon, C., Abdelly, C., and Huchzermeyer, B. 2008. Relationship between the photosynthetic activity and the performance of Cakile maritima after longterm salt treatment. Physiologia Plantarum 133: 373-385. https://doi.org/10.1111/j.1399-3054.2008.01086.x
  6. Dillen, S.Y., Marron, N., Koch, B., and Ceulemans, R. 2008. Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides 'S9-2'$\times$P. nigra 'Ghoy'and P. deltoides 'S9-2'$\times$P. trichocarpa 'V24'). Annals of Botany 102: 399-407. https://doi.org/10.1093/aob/mcn107
  7. Everard, J.D., Gucci, R., Kann, S.C., Flore, J.A., and Loescher, W.H. 1994. Gas exchange and carbon partitioning in the leaves of Celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiology 106(1): 281-292. https://doi.org/10.1104/pp.106.1.281
  8. Franks, P.J. and Beerling, D.J. 2009. Maximum leaf conductance driven by $CO_2$ effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America 106: 10343-10347. https://doi.org/10.1073/pnas.0904209106
  9. Galuszka, A., Migaszewski, Z.M., Podlaski, R., Dolęgowska, S., and Michalik, A. 2011. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring Assessment 176: 451-464. https://doi.org/10.1007/s10661-010-1596-z
  10. Garcia-Sanchez, F., Jifon, J.L., Carvaial, M. and Syvertsen, J.P. 2002. Gas exchange, chlorophyll and nutrient contents in relation to $Na^+$ and $Cl^-$ accumulation in 'Sunburst' mandarin grafted on different rootstocks. Plant Science 162: 705-712. https://doi.org/10.1016/S0168-9452(02)00010-9
  11. Geissler, N., Hussin, S., and Koyro, H.-W. 2009. Interactive effects of NaCl salinity and elevated atmospheric $CO_2$ concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany 65: 220-231. https://doi.org/10.1016/j.envexpbot.2008.11.001
  12. Hasegawa, P.M., Bressnan, R.A., Zhu, J.-K., and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology and Plant Molecular Biology 51: 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  13. Korea Biodiversity Information System. 2016. Plant. http://www.nature.go.kr (2016.03.10.).
  14. Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell & Environment 16: 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  15. Perez-Lopez, U., Robredo, A., Lacuesta, M., Mena-Petite, A., and Munoz-rueda, A. 2012. Elevated $CO_2$ reduced stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis research 111: 269-283. https://doi.org/10.1007/s11120-012-9721-1
  16. Stepien, P. and Klobus, G. 2006. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum 50(4):610-616. https://doi.org/10.1007/s10535-006-0096-z
  17. Sung, J.H., Je, S.M., Kim, S.-H., and Kim, Y.-K. 2010. Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii. Journal of Korean Forest Society 99(6): 922-928.
  18. Taylor, G., Tricker, P.J., Zhang, F.Z., Alston, V.J., Miglietta, F., and Kuzminsky, E. 2003. Spatial and temporal effects of free-air $CO_2$ enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar. Plant Physiology 131: 177-185. https://doi.org/10.1104/pp.011296
  19. Viskari, E.-L. and Karenlampi, L. 2000. Roadside scots pine as an indicator of deicing salt use - A comparative study from two consecutive winters. Water, Air and Soil Pollution 122(3): 405-419. https://doi.org/10.1023/A:1005235422943
  20. Wnsche, J.N., Greer, D.H., Laing, W.A., and Palmer, J.W. 2005. Physiological and biochemical leaf and tree responses to crop load in apple. Tree Physiology 25: 1253-1263. https://doi.org/10.1093/treephys/25.10.1253
  21. Zhu, M., Zhou M., Shabala, L., and Shabala, S. 2015. Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barely accessions. Functional Plant Biology 42(3): 252-263.

Cited by

  1. 염화칼슘에 의한 스트로브잣나무의 생장 및 생리반응 vol.45, pp.3, 2017, https://doi.org/10.9715/kila.2017.45.3.001
  2. 수경재배에서 제설제 염소이온 농도에 따른 개운죽 (Dracaena braunii)의 생육반응 vol.26, pp.9, 2017, https://doi.org/10.5322/jesi.2017.26.9.1081
  3. 충주시 가로수의 황변정도에 따른 토양 내 제설제 성분의 흡수이행성 평가 vol.21, pp.4, 2016, https://doi.org/10.13087/kosert.2018.21.4.1
  4. 제주지역 주요 활엽수의 대기 중 CO2 흡수율과 수분이용효율의 계절적 변화 vol.29, pp.2, 2016, https://doi.org/10.5322/jesi.2020.29.2.123