DOI QR코드

DOI QR Code

Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation

종가시나무 조림지의 임분밀도에 따른 임목 바이오매스 및 양분축적량

  • Choi, Bong-Jun (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Jo, Chang-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Seong-Wan (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Yoo, Byung Oh (Southern Forest Resources Research Center of the National Institute of Forest Science) ;
  • Jeong, Su-Young (Southern Forest Resources Research Center of the National Institute of Forest Science) ;
  • Lee, Kwang Soo (Southern Forest Resources Research Center of the National Institute of Forest Science) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 최봉준 (경남과학기술대학교 산림자원학과) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 조창규 (경남과학기술대학교 산림자원학과) ;
  • 박성완 (경남과학기술대학교 산림자원학과) ;
  • 유병오 (국립산림과학원 남부산림자원연구소) ;
  • 정수영 (국립산림과학원 남부산림자원연구소) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Received : 2016.06.29
  • Accepted : 2016.08.02
  • Published : 2016.09.30

Abstract

This study was conducted to evaluate aboveground tree biomass and nutrient (C, N, P, K, Ca, and Mg) response of tree components by high (1,933 trees $ha^{-1}$) and low (1,200 tree $ha^{-1}$) stand densities in a 27-year-old Quercus glauca plantation. The study site was located in Goseong county, Gyeongsangnam-do, southern Korea. Total 12 trees (6 high and 6 low stand densities) were cut to develop allometric equations and to measure nutrient concentration of tree components. Stand density-specific allometric equations in the high and low stand densities were significant (P < 0.05) in tree components with diameter at breast height (DBH). Also, generalized allometric equations could be applied to estimate tree biomass regardless of the difference of stand density because of no significant effect on slope of stand density-specific allometric equations. Aboveground tree biomass estimated by the allometric equations was significantly higher in the high stand density (177 Mg $ha^{-1}$) than in the low stand density (114 Mg $ha^{-1}$). However, nutrient concentration of tree components was not significantly affected by the difference of stand density. Nutrient stocks in tree components were not significantly between the high stand density and the low stand density, except for the N and P stocks of stem wood. These results indicate that aboveground tree biomass could be significantly affected by stand density, but nutrient concentration among the tree components was not affected by the difference of stand density in a Quercus glauca plantation.

본 연구는 경상남도 고성군에 식재된 상록활엽수인 27년생 종가시나무 조림지를 대상으로 고밀도(1,933본/ha)와 저밀도(1,200본/ha)구분한 후 총12본(고밀도 임분 6본, 저밀도 임분 6본)의 표본목을 벌채하고 임목부위별 바이오 매스 추정을 위한 상대생장식과 양분(C, N, P, K, Ca, Mg)축적량을 조사하였다. 흉고직경(DBH)을 독립변수로 하는 임분밀도별 줄기 목질부, 줄기 수피, 가지, 잎, 지상부 총량 등의 바이오매스 추정을 위한 상대생장식의 유의성이 인정되었으며(P < 0.05), 상대생장계수(slope)는 유의적인 차이가 없어 일괄상대생장식의 적용이 가능한 것으로 나타났다. 종가시나무 조림지의 지상부 임목 바이오매스는 고밀도 임분이 177 Mg $ha^{-1}$로, 저밀도 임분 114 Mg $ha^{-1}$에 비해 유의적으로 높았다. 그러나 줄기 목질부, 줄기 수피, 가지, 잎 등의 임목부위별 양분 농도의 경우 임분밀도 따른 유의적인 차이는 없었다(P > 0.05). 임목부위별 양분축적량은 줄기 목질부의 질소 및 인축적량을 제외하고 고밀도 임분과 저밀도 임분 사이에 유의적인 차이는 없었다. 본 연구결과에 따르면 종가시나무 조림지의 임목부위별 양분농도의 경우 바이오매스 축적량에 비해 임분밀도의 영향이 크지 않는 것으로 나타났다.

Keywords

References

  1. Augusto, L., Meredieu, C., Bert, D., Trichet, P., Porte, A., Bosc, A., Lagane, F., Loustau, D., Pellerin, S., Danjon, F., Ranger, J., and Gelpe, J. 2008. Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments. Annals of Forest Science 65: 808-808. https://doi.org/10.1051/forest:2008059
  2. Augusto L., Bakker, M., Lavaissiere, S.D., Jordan-Meille, L., and Saur, E. 2009. Estimation of nutrient content of woody plants using allometric relationships: quantifying the difference between concentration values from the literature and actuals. Forestry 82: 463-477. https://doi.org/10.1093/forestry/cpp019
  3. Balboa-Murias, M.A., Rojo, A., Alvarez, J.G., and Merino, A. 2006. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science 63: 557-565. https://doi.org/10.1051/forest:2006038
  4. Barron-Gafford, G.A., Will, R.Y., Burkes, E.C, Shiver, B., and Teskey, R.O. 2003. Nutrient concentrations and contents, and their relation to stem growth of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities. Forest Science 49: 291-300.
  5. Bravo, F., LeMay, V., Jandl, R., and von Gadow, K. 2008. Managing Forest Ecosystem: The challenge of climate change. Springer. pp. 338.
  6. Hagen-Thorn, A., Armolaitis, K., Callesen, I., and Stjernquist, I. 2004. Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites. Annals of Forest Science 61: 489-498. https://doi.org/10.1051/forest:2004043
  7. Hwang, J., Lee, S.T., Kim, B.B., Kwon, B.S., and Shin, H.C. 2005. Standing biomass and inorganic distribution for a Camellia japonica stand at Mt. Cheongwan (Janghuenggun, Jeonnam). Korean Journal of Ecology 28(3): 163-168. https://doi.org/10.5141/JEFB.2005.28.3.163
  8. Jeong, J., Kim, C., Goo, K., Lee, C., Won, H., and Byun, J. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forest Society 92(3): 254-262.
  9. Jeong, H.M., Kim, H.R., Cho, K.T., Lee, S.H. Han,, Y.S., and You, Y.H. 2014. Aboveground biomass estimation of Quercus glauca in evergreen forest, Kotzawal wetland, Cheju Island, Korea. Journal of Wetland 16(2): 245-250. https://doi.org/10.17663/JWR.2014.16.2.245
  10. Kalra, Y.P. and Maynard, D.G. 1991. Methods Manual for Forest Soil and Plant Analysis. North. For. Cent., Edmonton, Alberta. Inf. Rep. NOR-X-319. pp. 115.
  11. Kim, C. 1999. Aboveground nutrient distribution in Pitch pine (Pinus rigida) and Japanese larch (Larix leptolepis) plantations. Journal of Korean Forest Society 88: 266-272.
  12. Kim, C., Jeong, J., Kim, R.H., Son, Y.M., Lee, K.H., Kim, J.S., and Park, I.H. 2011. Allometric equations and biomass expansion factors of Japanese red pine on the local level. Landscape and Ecological Engineering 7: 283-289. https://doi.org/10.1007/s11355-010-0131-2
  13. Kim, C., Lee, K.S., Son, Y.M., and Cho, H.S. 2013. Allometric equations and biomass expansion factors in an agesequence of black pine (Pinus thunbergii) stands. Journal of Korean Forest Society 102: 543-549. https://doi.org/10.14578/jkfs.2013.102.4.543
  14. Kim, C., Jeong, J., Park, J.H., and Ma, H.S. 2015. Growth and nutrient status of foliage as affected by tree species and fertilization in a fire-disturbed urban forest. Forests 6:2199-2213. https://doi.org/10.3390/f6062199
  15. Korea Forest Research Institute 2010. Survey Manual for Biomass and Soil Carbon. pp. 60.
  16. Lee, J.S. and Kim, C. 1988. Biomass production of Machilus thunbergii S. et. Z. stands at Bogil island in Korea. Journal of Korean Forest Society 77(1): 10-16.
  17. Lee, M.J. 1988. Changes in aboveground biomass and nutrient accumulation of the Korean-pine (Pinus korainesis) plantation by stand age at Kwangwondo province. Journal of Korean Forest Society 87: 276-285.
  18. Lee, S.T., Hwang, J. Kim, B.B., Lee, K.J., Shin, H.C., and Park, N.C. 2005. Estimation of biomass and nutrient distribution in natural forest for Machilus thunbergii. Korean Journal of Forest Measurement 8: 83-90.
  19. Lee, S.T., Hwang, J.H., Lee, K.J. Shin, H.C. Kim, B.B. Park, M.S. Jun, K.S., and Cho, H.S. 2007. Biomass expansion factors (BEFs) for Quercus acuta according to age classes. Korean Journal of Environmental Ecology 21: 554-558.
  20. Nilsson, L.O., Huttle, R.F., and Johansson, U.T. 1995. Nutrient uptake and cycling in forest ecosystems. Plant and Soil 168-169: 5-685. https://doi.org/10.1007/BF00029308
  21. Osman K.T. 2013. Forest Soils, Properties and Management. Springer, Switzerland. pp. 217.
  22. Noh, N.J., Kim, C., Bae, S.W., Lee, W.K., Yoon, T.K., Muraoka, H., and Son, Y. 2013. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. Journal of Plant Ecology 6: 368-379. https://doi.org/10.1093/jpe/rtt007
  23. Rubilar, R.A., Allen, H.L., and Kelting, D.L., 2005. Comparison of biomass and nutrient content equations for successive rotations of loblolly pine plantations on an Upper Coastal Plain Site. Biomass and Bioenergy 28: 548-564. https://doi.org/10.1016/j.biombioe.2004.12.001
  24. SAS Institute Inc. 2003. SAS/STAT Statistical Software. Version 9.1. SAS publishing Cary, NC. USA
  25. Shin, H.C, Park, N.C., and Hwang, J.H. 2006. Warm temperate tree species in Korea. Korea Forest Research Institute. pp. 218.
  26. Son, Y.M., Kim, R.H., Kang, J.T., Lee, K.S., and Kim, S.W. 2014. A practical application and development of carbon emission factors for 4 major species of warm temperate forest in Korea. Journal of Korean Forest Society 103(4): 593-598. https://doi.org/10.14578/jkfs.2014.103.4.593
  27. Temesgen, H., Affleck, D., Poudel, K., Gray, A., and Sessions, J. 2015. A review of the challenges and opportunities in estimating above ground forest biomass using treelevel models. Scandinavian Journal of Forest Research 30: 326-335.

Cited by

  1. Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea vol.42, pp.5, 2018, https://doi.org/10.1186/s41610-018-0068-1