DOI QR코드

DOI QR Code

Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

  • Park, Kyunghyuk (Department of Biological Sciences, Seoul National University) ;
  • Frost, Jennifer M. (Department of Plant and Microbial Biology, University of California) ;
  • Adair, Adam James (Department of Plant and Microbial Biology, University of California) ;
  • Kim, Dong Min (Department of Biological Sciences, Seoul National University) ;
  • Yun, Hyein (Department of Biological Sciences, Seoul National University) ;
  • Brooks, Janie S. (Department of Science, Seoul Foreign School) ;
  • Fischer, Robert L. (Department of Plant and Microbial Biology, University of California) ;
  • Choi, Yeonhee (Department of Biological Sciences, Seoul National University)
  • Received : 2016.08.31
  • Accepted : 2016.09.13
  • Published : 2016.10.31

Abstract

The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

Keywords

References

  1. Bechtold, N., and Pelletier, G. (1998). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259-266.
  2. Birnbaum, K., Jung, J.W., Wang, J.Y., Lambert, G.M., Hirst, J.A., Galbraith, D.W., and Benfey, P.N. (2005). Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods 2, 615-619. https://doi.org/10.1038/nmeth0805-615
  3. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R.,, and Gorlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510. https://doi.org/10.1105/tpc.13.7.1499
  4. Chen, J., Yi, Q., Song, Q., Gu, Y., Zhang, J., Hu, Y., Liu, H., Liu, Y., Yu, G., and Huang, Y. (2015). A highly efficient maize nucellus protoplast system for transient gene expression and studying programmed cell death-related processes. Plant Cell Rep. 34, 1239-1251. https://doi.org/10.1007/s00299-015-1783-z
  5. Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L. (2002). DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33-42. https://doi.org/10.1016/S0092-8674(02)00807-3
  6. Cocking, E.C. (1960). A method for the isolation of plant protoplasts and vacuoles. Nature 187, 962-963. https://doi.org/10.1038/187962a0
  7. Deal, R.B., and Henikoff, S. (2010). A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030-1040. https://doi.org/10.1016/j.devcel.2010.05.013
  8. Deal, R.B., and Henikoff, S. (2011). The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56-68. https://doi.org/10.1038/nprot.2010.175
  9. Faraco, M., Di Sansebastiano, G.P., Spelt, K., Koes, R.E., and Quattrocchio, F.M. (2011). One protoplast is not the other! Plant Physiol. 156, 474-478. https://doi.org/10.1104/pp.111.173708
  10. Fischer, R., and Hain, R. (1995). Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs. Methods Cell. Biol. 50, 401-410. https://doi.org/10.1016/S0091-679X(08)61046-8
  11. Gehring, M., Bubb, K.L., and Henikoff, S. (2009). Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324, 1447-1451. https://doi.org/10.1126/science.1171609
  12. Gronlund, J.T., Eyres, A., Kumar, S., Buchanan-Wollaston, V. and Gifford, M.L. (2012). Cell specific analysis of Arabidopsis leaves using fluorescence activated cell sorting. J. Vis. Exp. 4, pii: 4214.
  13. Harholt, J., Suttangkakul, A., and Vibe Scheller, H. (2010). Biosynthesis of pectin. Plant Physiol. 153, 384-395. https://doi.org/10.1104/pp.110.156588
  14. Henry, G.L., Davis, F.P., Picard, S., and Eddy, S.R. (2012). Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res. 40, 9691-9704. https://doi.org/10.1093/nar/gks671
  15. Hong, S.-Y., Seo, P.J., Cho, S.-H., and Park, C.-M. (2012). Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. J. Plant Biol. 55, 390-397. https://doi.org/10.1007/s12374-012-0159-y
  16. Hoshino, Y., Murata, N., and Shinoda, K. (2006). Isolation of individual egg cells and zygotes in Alstroemeria followed by manual selection with a microcapillary-connected micropump. Ann Bot 97, 1139-1144. https://doi.org/10.1093/aob/mcl072
  17. Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., and Zilberman, D. (2009). Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451-1454. https://doi.org/10.1126/science.1172417
  18. Hsieh, T.F., Shin, J., Uzawa, R., Silva, P., Cohen, S., Bauer, M.J., Hashimoto, M., Kirkbride, R.C., Harada, J.J., Zilberman, D., et al. (2011). Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl. Acad. Sci. USA 108, 1755-1762. https://doi.org/10.1073/pnas.1019273108
  19. Ibarra, C.A., Feng, X., Schoft, V.K., Hsieh, T.F., Uzawa, R., Rodrigues, J.A., Zemach, A., Chumak, N., Machlicova, A., Nishimura, T., et al. (2012). Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360-1364. https://doi.org/10.1126/science.1224839
  20. Im, J.H., and Yoo, S.D. (2014). Transient expression in Arabidopsis leaf mesophyll protoplast system for cell-based functional analysis of MAPK cascades signaling. Methods Mol. Biol. 1171, 3-12. https://doi.org/10.1007/978-1-4939-0922-3_1
  21. Kelley, D.R., and Gasser, C.S. (2009). Ovule development: genetic trends and evolutionary considerations. Sex Plant Reprod. 22, 229-234. https://doi.org/10.1007/s00497-009-0107-2
  22. Kim, M., Ohr, H., Lee, J.W., Hyun, Y., Fischer, R.L., and Choi, Y. (2008). Temporal and spatial downregulation of Arabidopsis MET1 activity results in global DNA hypomethylation and developmental defects. Mol. Cells 26, 611-615.
  23. Lenhard, M., Bohnert, A., Jurgens, G., and Laux, T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805-814. https://doi.org/10.1016/S0092-8674(01)00390-7
  24. Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69. https://doi.org/10.1038/379066a0
  25. Moreno-Romero, J., Jiang, H., Santos-Gonzalez, J., and Kohler, C. (2016). Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J. 35, 1298-1311. https://doi.org/10.15252/embj.201593534
  26. Ohyama, K., Gamborg, O.L., and Miller, R.A. (1972). Isolation and properties of deoxyribonucleic acid from protoplasts of cell suspension cultures of Ammi visnaga and Carrot (Daucus carota). Plant Physiol. 50, 319-321. https://doi.org/10.1104/pp.50.3.319
  27. Pillitteri, L.J., Bemis, S.M., Shpak, E.D., and Torii, K.U. (2007). Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development 134, 3099-3109. https://doi.org/10.1242/dev.004788
  28. Rose, A., and Meier, I. (2001). A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc. Natl. Acad. Sci. USA 98, 15377-15382. https://doi.org/10.1073/pnas.261459698
  29. Schapire, A.L., and Lois, L.M. (2016). A simplified and rapid method for the isolation and transfection of Arabidopsis leaf mesophyll protoplasts for large-scale applications. Methods Mol. Biol. 1363, 79-88. https://doi.org/10.1007/978-1-4939-3115-6_8
  30. Schmidt, A., Schmid, M.W., and Grossniklaus, U. (2012). Analysis of plant germline development by high-throughput RNA profiling: technical advances and new insights. Plant J. 70, 18-29. https://doi.org/10.1111/j.1365-313X.2012.04897.x
  31. Sheen, J. (1993). Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J. 12, 3497-3505.
  32. Sheen, J. (2001). Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466-1475. https://doi.org/10.1104/pp.010820
  33. Shepard, J.F., and Totten, R.E. (1977). Mesophyll cell protoplasts of potato: isolation, proliferation, and plant regeneration. Plant Physiol. 60, 313-316. https://doi.org/10.1104/pp.60.2.313
  34. Slotkin, R.K., Vaughn, M., Borges, F., Tanurdzic, M., Becker, J.D., Feijo, J.A., and Martienssen, R.A. (2009). Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461-472. https://doi.org/10.1016/j.cell.2008.12.038
  35. Steffen, J.G., Kang, I.H., Macfarlane, J., and Drews, G.N. (2007). Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 51, 281-292. https://doi.org/10.1111/j.1365-313X.2007.03137.x
  36. Truernit, E., and Haseloff, J. (2007). A role for KNAT class II genes in root development. Plant Signal. Behav. 2, 10-12. https://doi.org/10.4161/psb.2.1.3604
  37. Weinhofer, I., Hehenberger, E., Roszak, P., Hennig, L., and Kohler, C. (2010). H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet. 6.
  38. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. https://doi.org/10.1186/1746-4811-5-16
  39. Wuest, S.E., Vijverberg, K., Schmidt, A., Weiss, M., Gheyselinck, J., Lohr, M., Wellmer, F., Rahnenfuhrer, J., von Mering, C., and Grossniklaus, U. (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506-512. https://doi.org/10.1016/j.cub.2010.01.051
  40. Yadegari, R., and Drews, G.N. (2004). Female gametophyte development. Plant Cell 16 Suppl, S133-141. https://doi.org/10.1105/tpc.018192
  41. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. https://doi.org/10.1038/nprot.2007.199
  42. Zhai, Z., Jung, H.I., and Vatamaniuk, O.K. (2009). Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. J. Vis. Exp. 17, pii: 1149.
  43. Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., et al. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30. https://doi.org/10.1186/1746-4811-7-30

Cited by

  1. DNA demethylation is initiated in the central cells ofArabidopsisand rice vol.113, pp.52, 2016, https://doi.org/10.1073/pnas.1619047114
  2. DEMETER-mediated DNA Demethylation in Gamete Companion Cells and the Endosperm, and its Possible Role in Embryo Development in Arabidopsis vol.63, pp.5, 2016, https://doi.org/10.1007/s12374-020-09258-2
  3. Nurse cell­–derived small RNAs define paternal epigenetic inheritance in Arabidopsis vol.373, pp.6550, 2016, https://doi.org/10.1126/science.abh0556
  4. An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo vol.44, pp.8, 2016, https://doi.org/10.14348/molcells.2021.0084
  5. Subcellular metabolomics: Isolation, measurement, and applications vol.210, pp.None, 2016, https://doi.org/10.1016/j.jpba.2021.114557