References
- Bailey, C.H., Chen, M., Keller, F., and Kandel, E.R. (1992). Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science 256, 645-649. https://doi.org/10.1126/science.1585177
- Bailey, C.H., Kaang, B.K., Chen, M., Martin, K.C., Lim, C.S., Casadio, A., and Kandel, E.R. (1997). Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron 18, 913-924. https://doi.org/10.1016/S0896-6273(00)80331-1
- Budnik, V., Koh, Y.H., Guan, B., Hartmann, B., Hough, C., Woods, D., and Gorczyca, M. (1996). Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17, 627-640. https://doi.org/10.1016/S0896-6273(00)80196-8
- Bukalo, O., Fentrop, N., Lee, A.Y., Salmen, B., Law, J.W., Wotjak, C.T., Schweizer, M., Dityatev, A., and Schachner, M. (2004). Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J. Neurosci. 24, 1565-1577. https://doi.org/10.1523/JNEUROSCI.3298-03.2004
- Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455-459. https://doi.org/10.1038/367455a0
- Dalva, M.B., McClelland, A.C., and Kayser, M.S. (2007). Cell adhesion molecules: signalling functions at the synapse. Nat. Rev. Neurosci. 8, 206-220.
- Fukuda, M., Kanno, E., Ishibashi, K., and Itoh, T. (2008). Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7, 1031-1042. https://doi.org/10.1074/mcp.M700569-MCP200
- Giridharan, S.S., and Caplan, S. (2014). MICAL-family proteins: Complex regulators of the actin cytoskeleton. Antioxid. Redox Signal. 20, 2059-2073. https://doi.org/10.1089/ars.2013.5487
- Glanzman, D.L., Kandel, E.R., and Schacher, S. (1990). Target-dependent structural changes accompanying long-term synaptic facilitation in Aplysia neurons. Science 249, 799-802. https://doi.org/10.1126/science.2389145
- Hoeffer, C.A., Sanyal, S., and Ramaswami, M. (2003). Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J. Neurosci. 23, 6362-6372. https://doi.org/10.1523/JNEUROSCI.23-15-06362.2003
- Koh, Y.H., Ruiz-Canada, C., Gorczyca, M., and Budnik, V. (2002). The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion. J. Neurosci. 22, 2496-2504. https://doi.org/10.1523/JNEUROSCI.22-07-02496.2002
- Kohsaka, H., Takasu, E., and Nose, A. (2007). In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2. J. Cell. Biol. 179, 1289-1300. https://doi.org/10.1083/jcb.200705154
- Lin, D.M., and Goodman, C.S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-523. https://doi.org/10.1016/0896-6273(94)90022-1
- Mathew, D., Popescu, A., and Budnik, V. (2003). Drosophila amphiphysin functions during synaptic Fasciclin II membrane cycling. J. Neurosci. 23, 10710-10716. https://doi.org/10.1523/JNEUROSCI.23-33-10710.2003
- Mayford, M., Barzilai, A., Keller, F., Schacher, S., and Kandel, E.R. (1992). Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256, 638-644. https://doi.org/10.1126/science.1585176
- Michael, D., Martin, K.C., Seger, R., Ning, M.M., Baston, R., and Kandel, E.R. (1998). Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia. Proc. Natl. Acad. Sci. USA 95, 1864-1869. https://doi.org/10.1073/pnas.95.4.1864
- Muller, D., Wang, C., Skibo, G., Toni, N., Cremer, H., Calaora, V., Rougon, G., and Kiss, J.Z. (1996). PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17, 413-422. https://doi.org/10.1016/S0896-6273(00)80174-9
- Nahm, M., Kim, S., Paik, S.K., Lee, M., Lee, S., Lee, Z.H., Kim, J., Lee, D., Bae, Y.C., and Lee, S. (2010a). dCIP4 (Drosophila Cdc42-interacting protein 4) restrains synaptic growth by inhibiting the secretion of the retrograde Glass bottom boat signal. J. Neurosci. 30, 8138-8150. https://doi.org/10.1523/JNEUROSCI.0256-10.2010
- Nahm, M., Long, A.A., Paik, S.K., Kim, S., Bae, Y.C., Broadie, K., and Lee, S. (2010b). The Cdc42-selective GAP rich regulates postsynaptic development and retrograde BMP transsynaptic signaling. J. Cell. Biol. 191, 661-675. https://doi.org/10.1083/jcb.201007086
- Packard, M., Mathew, D., and Budnik, V. (2003). FASt remodeling of synapses in Drosophila. Curr. Opin. Neurobiol. 13, 527-534. https://doi.org/10.1016/j.conb.2003.09.008
- Sakane, A., Honda, K., and Sakai, K. (2010). Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Mol. Cell Biol. 30, 1077-1087. https://doi.org/10.1128/MCB.01067-09
- Schuster, C.M., Davis, G.W., Fetter, R.D., and Goodman, C.S. (1996a). Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641-654. https://doi.org/10.1016/S0896-6273(00)80197-X
- Schuster, C.M., Davis, G.W., Fetter, R.D., and Goodman, C.S. (1996b). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17, 655-667. https://doi.org/10.1016/S0896-6273(00)80198-1
- Sharma, M., Giridharan, S.S., Rahajeng, J., Naslavsky, N., and Caplan, S. (2009). MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling. Mol. Biol. Cell 20, 5181-5194. https://doi.org/10.1091/mbc.E09-06-0535
- Terai, T., Nishimura, N., Kanda, I., Yasui, N., and Sasaki, T. (2006). JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol. Biol. Cell 17, 2465-2475. https://doi.org/10.1091/mbc.E05-09-0826
- Verstreken, P., Ohyama, T., and Bellen, H.J. (2008). FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol. Biol. 440, 349-369. https://doi.org/10.1007/978-1-59745-178-9_26
- Yamamura, R., Nishimura, N., Nakatsuji, H., Arase, S., and Sasaki, T. (2008). The interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of tight junctions and adherens junctions. Mol. Biol. Cell. 19, 971-983. https://doi.org/10.1091/mbc.e07-06-0551
Cited by
- Emerging roles of MICAL family proteins – from actin oxidation to membrane trafficking during cytokinesis vol.130, pp.9, 2017, https://doi.org/10.1242/jcs.202028
- RabX1 Organizes a Late Endosomal Compartment that Forms Tubular Connections to Lysosomes Consistent with a “Kiss and Run” Mechanism vol.30, pp.7, 2020, https://doi.org/10.1016/j.cub.2020.01.048