참고문헌
- Aaron, S.D., Vandemheen, K.L., Fergusson, D., Maltais, F., Bourbeau, J., Goldstein, R., Balter, M., O'Donnell, D., McIvor, A., Sharma, S., et al. (2007). Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. 146, 545-555. https://doi.org/10.7326/0003-4819-146-8-200704170-00152
- Ahmad, M.K., and Mahmood, R. (2016). Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood. Environ. Toxicol. 31, 304-313. https://doi.org/10.1002/tox.22045
- Banks, M.F., Gerasimovskaya, E.V., Tucker, D.A., Frid, M.G., Carpenter, T.C., and Stenmark, K.R. (2005). Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. J. Appl. Physiol. (1985) 98, 732-738. https://doi.org/10.1152/japplphysiol.00821.2004
- Benarafa, C., Priebe, G.P., and Remold-O'Donnell, E. (2007). The neutrophil serine protease inhibitor serpinb1 preserves lung defense functions in Pseudomonas aeruginosa infection. J. Exp. Med. 204, 1901-1909. https://doi.org/10.1084/jem.20070494
- Calverley, P.M., Anderson, J.A., Celli, B., Ferguson, G.T., Jenkins, C., Jones, P.W., Yates, J.C., and Vestbo, J. (2007). Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 775-789. https://doi.org/10.1056/NEJMoa063070
- Chen, Z.H., Kim, H.P., Ryter, S.W., and Choi, A.M. (2008). Identifying targets for COPD treatment through gene expression analyses. Int. J. Chron. Obstruct. Pulmon. Dis. 3, 359-370. https://doi.org/10.2147/COPD.S1758
- Grek, C.L., Newton, D.A., Spyropoulos, D.D., and Baatz, J.E. (2011). Hypoxia up-regulates expression of hemoglobin in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 44, 439-447. https://doi.org/10.1165/rcmb.2009-0307OC
- Halappanavar, S., Russell, M., Stampfli, M.R., Williams, A., and Yauk, C.L. (2009). Induction of the interleukin 6/ signal transducer and activator of transcription pathway in the lungs of mice sub-chronically exposed to mainstream tobacco smoke. BMC Med. Genomics 2, 56. https://doi.org/10.1186/1755-8794-2-56
- Hautamaki, R.D., Kobayashi, D.K., Senior, R.M., and Shapiro, S.D. (1997). Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002-2004. https://doi.org/10.1126/science.277.5334.2002
- Henning, R.J., Sanberg, P., and Jimenez, E. (2014). Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy 16, 1158-1168. https://doi.org/10.1016/j.jcyt.2014.01.415
- Huffman, L.J., Miles, P.R., Shi, X., and Bowman, L. (2000). Hemoglobin potentiates the production of reactive oxygen species by alveolar macrophages. Exp. Lung Res. 26, 203-217. https://doi.org/10.1080/019021400269871
- Huh, J.W., Kim, S.Y., Lee, J.H., Lee, J.S., Van Ta, Q., Kim, M., Oh, Y.M., Lee, Y.S., and Lee, S.D. (2011). Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L255-266. https://doi.org/10.1152/ajplung.00253.2010
- Katsha, A.M., Ohkouchi, S., Xin, H., Kanehira, M., Sun, R., Nukiwa, T., and Saijo, Y. (2011). Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol. Ther. 19, 196-203. https://doi.org/10.1038/mt.2010.192
- Kim, Y.S., Kim, J.Y., Shin, D.M., Huh, J.W., Lee, S.W., and Oh, Y.M. (2014). Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc. Respir. Dis. (Seoul) 77, 116-123. https://doi.org/10.4046/trd.2014.77.3.116
- Lee, R.H., Pulin, A.A., Seo, M.J., Kota, D.J., Ylostalo, J., Larson, B.L., Semprun-Prieto, L., Delafontaine, P., and Prockop, D.J. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54-63. https://doi.org/10.1016/j.stem.2009.05.003
- Liang, X., Ding, Y., Zhang, Y., Tse, H.F., and Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 23, 1045-1059. https://doi.org/10.3727/096368913X667709
- Macari, E.R., and Lowrey, C.H. (2011). Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood 117, 5987-5997. https://doi.org/10.1182/blood-2010-10-314096
- MacNee, W., and Tuder, R.M. (2009). New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc. Am. Thorac. Soc. 6, 527-531. https://doi.org/10.1513/pats.200905-027DS
- Murphy, M.B., Moncivais, K., and Caplan, A.I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 45, e54. https://doi.org/10.1038/emm.2013.94
- Newton, D.A., Rao, K.M., Dluhy, R.A., and Baatz, J.E. (2006). Hemoglobin is expressed by alveolar epithelial cells. J. Biol. Chem. 281, 5668-5676. https://doi.org/10.1074/jbc.M509314200
- Rabe, K.F., Hurd, S., Anzueto, A., Barnes, P.J., Buist, S.A., Calverley, P., Fukuchi, Y., Jenkins, C., Rodriguez-Roisin, R., van Weel, C., et al. (2007). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176, 532-555. https://doi.org/10.1164/rccm.200703-456SO
- Rangasamy, T., Misra, V., Zhen, L., Tankersley, C.G., Tuder, R.M., and Biswal, S. (2009). Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L888-900. https://doi.org/10.1152/ajplung.90369.2008
- Schweitzer, K.S., Johnstone, B.H., Garrison, J., Rush, N.I., Cooper, S., Traktuev, D.O., Feng, D., Adamowicz, J.J., Van Demark, M., Fisher, A.J., et al. (2011). Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am. J. Respir. Crit. Care Med. 183, 215-225. https://doi.org/10.1164/rccm.201001-0126OC
- Shapiro, S.D. (1995). The pathogenesis of emphysema: the elastase:antielastase hypothesis 30 years later. Proc. Assoc. Am. Phys. 107, 346-352.
- Shapiro, S.D., Goldstein, N.M., Houghton, A.M., Kobayashi, D.K., Kelley, D., and Belaaouaj, A. (2003). Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 163, 2329-2335. https://doi.org/10.1016/S0002-9440(10)63589-4
- Stone, P.J. (1983). The elastase-antielastase hypothesis of the pathogenesis of emphysema. Clin. Chest Med. 4, 405-412.
- Suga, H., Glotzbach, J.P., Sorkin, M., Longaker, M.T., and Gurtner, G.C. (2014). Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Ann. Plast. Surg. 72, 234-241. https://doi.org/10.1097/SAP.0b013e318264fd6a
- Yang, J.Y., Jin, J., Zhang, Z., Zhang, L., and Shen, C. (2013). Integration microarray and regulation datasets for chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci. 17, 1923-1931.
- Yoshida, T., and Tuder, R.M. (2007). Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol. Rev. 87, 1047-1082. https://doi.org/10.1152/physrev.00048.2006
- Zandi-Nejad, K., Takakura, A., Jurewicz, M., Chandraker, A.K., Offermanns, S., Mount, D., and Abdi, R. (2013). The role of HCA2 (GPR109A) in regulating macrophage function. FASEB J. 27, 4366-4374. https://doi.org/10.1096/fj.12-223933
피인용 문헌
- Mesenchymal stromal cell therapy in COPD: from bench to bedside vol.12, pp.None, 2016, https://doi.org/10.2147/copd.s146671
- Cell therapy for lung disease vol.26, pp.144, 2016, https://doi.org/10.1183/16000617.0044-2017
- Adipose Tissue-Derived Stem Cells Have the Ability to Differentiate into Alveolar Epithelial Cells and Ameliorate Lung Injury Caused by Elastase-Induced Emphysema in Mice vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5179172
- Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0101
- Current therapeutic strategies for respiratory diseases using mesenchymal stem cells vol.2, pp.3, 2016, https://doi.org/10.1002/mco2.74
- Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD) vol.12, pp.1, 2016, https://doi.org/10.1186/s13287-020-02088-6