DOI QR코드

DOI QR Code

TCP Algorithm Improvement for Smartphone Data Transmissions

스마트폰 통신성향을 고려한 TCP 개선방안

  • Lee, Joon Yeop (School of Electrical Engineering, Korea University) ;
  • Kim, Hyunsoon (School of Electrical Engineering, Korea University) ;
  • Lee, Woonghee (School of Electrical Engineering, Korea University) ;
  • Kim, Hwangnam (School of Electrical Engineering, Korea University)
  • Received : 2016.07.31
  • Accepted : 2016.09.12
  • Published : 2016.10.31

Abstract

This paper suggests adjusting TCP for smartphones that often have small size data transmission tendency. Usage of smartphones has been risen dramatically in recent years, including frequent usage of real-time map search, public transportation search, online games, and SNS. Because the small size data transmission ends before the phase of the TCP congestion avoidance, this paper suggests an algorithm that increases the transmission speed ahead of the traffic congestion event. The algorithm reduces unnecessary delay by data size-driven adjustment of the Linux Quick ACK and Nagle's algorithm. Therefore, TCP is improved to maintain a high transmission rate steadily in small data transmission.

본 논문에서는 저용량 데이터의 전송빈도가 높은 스마트폰의 데이터 통신 성향을 참조하여, 스마트폰의 특성에 알맞은 알고리즘을 제시한다. 스마트폰의 사용량은 최근 비약적으로 늘어났으며, 실시간 지도검색, 대중교통 정보 확인, 게임, SNS 등의 사용 빈도가 높아지게 되었다. 이러한 스마트폰에서 주로 일어나는 저용량 데이터 통신은 TCP의 혼잡회피 단계가 나오기 이전에 데이터 전송이 끝나는 경우가 대부분이므로, 본 논문에서는 혼잡회피가 아닌 다른 TCP 관련 알고리즘을 조정하여 초기 통신 속도의 향상을 구현하였다. 본 논문에서 제시하는 알고리즘은 리눅스의 Quick ACK과 네이글 알고리즘(Nagle's algorithm)의 조절을 통하여 불필요한 지연을 줄이고, 짧은 통신에서도 안정적으로 높은 전송속도를 유지할 수 있도록 TCP를 개선하였다.

Keywords

References

  1. S. Choi and S. Han, "A study on determinants of consumers' choice of mobile data service," J. KICS, vol. 40, no. 1, pp. 115-123, 2015. https://doi.org/10.7840/kics.2015.40.1.115
  2. J. C. Hoe, "Improving the start-up behavior of a congestion control scheme for TCP," ACM SIGCOMM Comput. Commun. Rev., vol. 26. no. 4, pp. 270-280, 1996. https://doi.org/10.1145/248157.248180
  3. S. Ha, I. Rhee, and L. Xu, "CUBIC: a new TCP-friendly high-speed TCP variant," ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64-74, 2008. https://doi.org/10.1145/1400097.1400105
  4. L. S. Brakmo, S. W. O'Malley, and L. L. Peterson, "TCP vegas: New techniques for congestion detection and avoidance," ACM SIGCOMM Commun. Architectures, Protocols Appl., vol. 24, no. 4, pp. 24-35, 1994.
  5. Y. Zaki, et al., "Adaptive congestion control for unpredictable cellular networks," in Proc. ACM Conf. Special Interest Group on Data Commun., 2015.
  6. S.-W. Lee, et al., "Empirical analysis of induced demand resulted from LTE service launching," J. KICS, vol. 37, no. 8, pp. 741-749, 2012. https://doi.org/10.7840/kics.2012.37C.8.741
  7. S. Ha and I. Rhee, "Hybrid slow start for high-bandwidth and long-distance networks," in Proc. PFLDnet, pp. 1-6, 2008.
  8. S. D. Strowes, "Passively measuring TCP round-trip times," Commun. ACM, vol. 56, no. 10, pp. 57-64, 2013. https://doi.org/10.1145/2507771.2507781
  9. K. Chae, T. H. Nguyen, M. Park, and S. Jung, "A study on advanced TCP snoop algorithm considering the feature of network layer," in Proc. KICS Int. Conf. Commun., pp. 581-582, 2013.
  10. N. Kim, et al., "A scalable video coding (SVC)-Aware retransmission scheme for multimedia streaming in IEEE 802.11 WLANs," J. KICS, vol. 39, no. 2, pp. 95-101, 2014.
  11. J. Chen, et al., "TCP with delayed ack for wireless networks," Ad Hoc Networks, vol. 6, no. 7, pp. 1098-1116, 2008. https://doi.org/10.1016/j.adhoc.2007.10.004
  12. S. Cheshire, TCP performance problems caused by interaction between Nagle's algorithm and delayed ACK(2005), Retrieved Sept., 30, 2016, from http://www.stuartcheshire.org/papers/NagleDelayedAck.
  13. A. Khurshid, M. H. Kabir, and R. Das, "Modified TCP newreno for wireless networks," NSysS, pp. 1-6, 2015.
  14. H. Gururaj and B. Ramesh, "Performance analysis of hstcp for optimizing data transfer rate in mobile ad-hoc networks," Int. J. Comput. Appl., vol. 123, no. 15, 2015.
  15. W. Bao, V. W. Wong, and V. Leung, "A model for steady state throughput of tcp cubic," GLOBECOM 2010, pp. 1-6, 2010.
  16. Y. Zhang, N. Ansari, M. Wu, and H. Yu, "Afstart: An adaptive fast tcp slow start for wide area networks," Commun.(ICC), pp. 1260-1264, 2012.
  17. M. Allman, S. Flayd, and C. Partidge, Increasing TCP's initial window, RFC3390, 1998.