DOI QR코드

DOI QR Code

Precise Indoor Positioning Algorithm for Energy Efficiency Based on BLE Fingerprinting

에너지 효율을 고려한 BLE 핑거프린팅 기반의 정밀 실내 측위 알고리즘

  • Lee, Dohee (Seowon University, Depr. of Information & Communications Engineering) ;
  • Lee, Jaeho (Seowon University, Depr. of Information & Communications Engineering)
  • Received : 2016.07.13
  • Accepted : 2016.09.07
  • Published : 2016.10.31

Abstract

As Indoor Positioning System demands due to increased penetration and utilization of smart device, Indoor Positioning System using Wi-Fi or BLE(Bluetooth Low Energy) beacon takes center stage. In this paper, a terminal location of the user is calculated through Microscopic Trilateration using RSSI based on BLE. In the next step, a fingerprinting map appling approximate value of Microscopic Trilateration increases an efficiency of computation amount and energy for Indoor Positioning System. I suggest Indoor Positioning Algorithm based on BLE fingerprinting considering efficiency of energy by conducting precise Trilateration that assure user's terminal position by using AP(Access Point) surrounding targeted fingerprinting cells. And This paper shows experiment and result based on An Suggesting Algorithm in comparison with a fingerprinting based on BLE and Wi-Fi that be used for Indoor Positioning System.

최근 스마트 기기의 보급 및 활용 증가로 인한 실내 위치 인식 시스템 수요가 급증함에 따라, Wi-Fi 및 BLE(Bluetooth Low Energy) 비콘을 이용한 실내 측위 시스템이 각광받고 있다. 본 논문은 BLE 비콘 기반에 중점을 두고 RSSI 신호를 이용하여 거시적인 삼변 측량 기법을 이용하여 산출한다. 그 결과 값을 근사치 위치에만 Fingerprinting을 적용하여 위치 측위 기본 연산량을 줄임과 동시에 에너지 효율을 증대시킨다. 또한 선정된 Fingerprinting Cell 주위의 AP(Access Point)만을 이용하여 사용자의 단말 위치의 정밀성을 보장하는 정밀 삼변 측량 연산을 수행하여 에너지 효율을 고려한 BLE 핑거프린팅 기반의 정밀 실내 측위 알고리즘을 제안한다. 또한 비교 기술로 실내 측위 시장 내 많이 이용 되는 BLE 및 Wi-Fi 환경 내의 핑거프린팅 기술을 본 논문에 제안한 알고리즘 방식을 기반으로 비교하여 실험 및 결과를 검증하였다.

Keywords

References

  1. J. Oh, "3D indoor positioning system based on smartphone," J. KICS, vol. 38C, no. 12, pp. 1126-1133, 2013. https://doi.org/10.7840/kics.2013.38C.12.1126
  2. N. Hyun, I. Lim, and J. Lee, "Location estimation method of positioning system utilizing the iBeacon," J. KIICE, vol. 19, no. 4, pp. 925-932, 2015.
  3. C. Yoon and C. Hwang, "Efficient indoor positioning systems for indoor location-based service provider," J. KIICE, vol. 19, no. 6, pp. 1368-1373, 2105.
  4. F. Palumbo, P. Barsocchi, and S. Chessa, "A stigmergic approach to indoor localization using bluetooth low energy beacons," IEEE Int. Conf., pp. 1-6, Aug. 2015.
  5. J. Huh, C. Lee, and J. Kim, "A study of beacon delivery characteristics in BLE based fingerprinting indoor positioning system," in Proc. KIISE, vol. 2015, no. 6, pp. 1612-1614, 2015.
  6. Wikipedia, Real-Time Locating Service
  7. K. Sung, J. Ryoo, and H. Kim, "Design and implementation of location determination technology based on RSSI and trilateration over smart-phone," in Proc. KICS Int. Conf. Commun., pp. 969-970, Jun. 2010.
  8. A. Thaljaoui, T. Val, N. Nasri, and D. Brulin, "BLE localization using RSSI measurements and iRingLA," IEEE ICIT, pp. 2178-2183, Mar. 2015.
  9. S. Kim, H. Son, S. Kim, and C. Lee, "Fingerprint-based indoor location tracking application development and performance analysis," in Proc. IEEK, pp. 677-680, Nov. 2014.
  10. Yabu Yosuke, Arai Ismail, "Performance evaluation of the indoor positioning by BLE radio field strength within the school building", The 77th nation convention of IPSJ, Information Processing Society of Japan, vol. 1, pp. 301-303, 2015.
  11. S. Jeong and J. Yim, "Implementation of the passenger positioning systems using beacon," J. KIICE, vol. 20, no. 1, pp. 153-160, Jan. 2016.
  12. S. Choi, H. Park, S. Lee, M. Son, Y. Koo, K. Park, and T. Kim, "An indoor location recognition scheme combining the triangulation method and fingerprinting," in Proc. KIISE, vol. 38, no. 2D, pp. 112-114, 2011.
  13. F. Ramsey and R. Harle, "An analysis of the accuracy of bluetooth low energy for indoor positioning applications," in Proc. ION GNSS+'14, vol. 812, Tampa, FL, USA, 2014.