DOI QR코드

DOI QR Code

Numerical Simulations of the 2011 Tohoku, Japan Tsunami Forerunner Observed in Korea using the Bathymetry Effect

지형효과를 이용한 한반도에서 관측된 2011년 동일본 지진해일 선행파 수치모의

  • Lee, Jun-Whan (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Park, Eun Hee (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Park, Sun-Cheon (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Duk Kee (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Jong Ho (Global Environment System Research Division, National Institute of Meteorological Sciences)
  • 이준환 (국립기상과학원 지구환경시스템연구과) ;
  • 박은희 (국립기상과학원 지구환경시스템연구과) ;
  • 박순천 (국립기상과학원 지구환경시스템연구과) ;
  • 이덕기 (국립기상과학원 지구환경시스템연구과) ;
  • 이종호 (국립기상과학원 지구환경시스템연구과)
  • Received : 2016.08.22
  • Accepted : 2016.10.11
  • Published : 2016.10.31

Abstract

The 2011 Tohoku, Japan Tsunami, which occurred on March 11, 2011, reached the Korean Peninsula and was recorded at numerous tide stations. In the records of the north-eastern tide stations, tsunami forerunners were found in only about a few minutes after the earthquake, which was much earlier than the expected arrival time based on a numerical simulation. Murotani et al. (2015) found out that the bathymetry effect is related to the tsunami forerunners observed in Japan and Russia. In this study, the tsunami forerunners observed in Korea were well reproduced by a numerical simulation considering the bathymetry effect. This indicates that it is important to consider the bathymetry effect for a tsunami caused by an earthquake on shallowly dipping fault plane(e.g. 2011 Tohoku, Japan Earthquake). However, since the bathymetry effect requires additional computation time, it is necessary to examine the problems that results from applying the bathymetry effect to the tsunami warning system.

2011년 3월 11일에 발생한 2011년 동일본(도호쿠) 지진해일은 한반도에 도달하여 많은 조위관측소에 기록되었다. 북동쪽 조위관측소 관측 자료에서 기존의 수치모의로 예측한 지진해일 도달시각보다 매우 이른 시간에 지진해일이 관측되는 지진해일 선행파가 관측되었다. Murotani et al.(2015)는 지형효과가 일본 및 러시아에서 관측된 지진해일 선행파와 관련 있음을 밝혔다. 본 연구에서는 지형효과를 고려한 지진해일 수치모의를 통해 우리나라에서 관측된 지진해일 선행파를 재현하였다. 이를 통하여 2011년 동일본 대지진과 같이 완만한 경사의 단층에서 발생한 지진에 의한 지진해일의 경우 지형효과를 고려하는 것이 지진해일 예측에 중요함을 알 수 있었다. 그러나 수치모의에 지형효과를 고려하기 위해서는 추가적인 연산 시간이 소요되므로 지진해일 통보 시스템에 적용하기 위해서는 충분한 검토가 필요하다.

Keywords

References

  1. Ammon, C.J., Lay, T., Kanamori, H. and Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63, 693-696, doi:10.5047/eps.2011.05.015.
  2. Baba, T., Cummins, P.R., Hori, T. and Kaneda, Y. (2006). High precision slip distribution of the 1944 Tonankai earthquake inferred from tsunami waveforms: Possible slip on a splay fault. Tectonophysics, 426(1), 119-134. https://doi.org/10.1016/j.tecto.2006.02.015
  3. Bae, J.S., Cho, Y.J., Kwon, S.J. and Yoon, S.B. (2012). Numerical analyses of 2011 East Japan Tsunami propagation towards Korean peninsula. Journal of Korean Society of Coastal and Ocean Engineers. 24(1), 66-76 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.1.066
  4. Bassin, C., Laske, G. and Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU, 81, F897.
  5. Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.M., Rolland, L., and Jiang, J. (2014). A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. Journal of Geophysical Research: Solid Earth, 119(10), 7636-7653. https://doi.org/10.1002/2014JB011261
  6. Bletery, Q., Sladen, A., Delouis, B. and Matteo, L. (2015). Quantification of tsunami bathymetry effect on finite fault slip inversion. Pure and Applied Geophysics, 172(12), 3655-3670. https://doi.org/10.1007/s00024-015-1113-y
  7. Borrero, J.C., Bell, R., Csato, C., DeLange, W., Goring, D., Greer, S.D., Pickett, V. and Power, W. (2013). Observations, effects and real time assessment of the March 11, 2011 Tohoku-oki tsunami in New Zealand. Pure and Applied Geophysics, 170(6-8), 1229-1248. https://doi.org/10.1007/s00024-012-0492-6
  8. Cheung, K.F., Bai, Y. and Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku tsunami. Journal of Geophysical Research: Oceans, 118(10), 5703-5719. https://doi.org/10.1002/jgrc.20413
  9. D'Errico, J. (2004). inpaint_nans (http://kr.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans), MATLAB Central File Exchange. Retrieved Aug 13, 2012.
  10. Dutykh, D., Mitsotakis, D., Chubarov, L.B. and Shokin, Y.I. (2012). On the contribution of the horizontal sea-bed displacements into the tsunami generation process. Ocean Modelling, 56, 43-56. https://doi.org/10.1016/j.ocemod.2012.07.002
  11. Fu, G. and Sun, W. (2006). Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (Mw 9.1). Earth, Planets and Space, 58(2), 149-152, doi:10.1186/BF03353371.
  12. Fujii, Y. and Satake, K. (2007). Tsunami source of the 2004 Sumatra- Andaman earthquake inferred from tide gauge and satellite data. Bulletin of the Seismological Society of America, 97(1A), S192-S207. https://doi.org/10.1785/0120050613
  13. Fujii, Y. and Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes. Bulletin of the Seismological Society of America, 98(3), 1559-1571. https://doi.org/10.1785/0120070221
  14. Geist, E.L., Bilek, S.L., Arcas, D. and Titov, V.V. (2006). Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth, Planets and Space, 58(2), 185-193. https://doi.org/10.1186/BF03353377
  15. Hartzell, S.H. and Heaton, T.H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553-1583.
  16. Hayes, G.P., Wald, D.J. and Johnson, R.L. (2012). Slab1.0: A three?dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B01302), doi:10.1029/2011JB008524.
  17. Hinwood, J.B. and Mclean, E.J. (2013). Effects of the March 2011 Japanese tsunami in bays and estuaries of SE Australia. Pure and Applied Geophysics, 170(6-8), 1207-1227. https://doi.org/10.1007/s00024-012-0561-x
  18. Johnson, J.M. and Satake, K. (1997). Estimation of seismic moment and slip distribution of the April 1, 1946, Aleutian tsunami earthquake. Journal of Geophysical Research, 102(B6), 11765-11774, doi:10.1029/97JB00274.
  19. Kustowski, B., Ekstrom, G. and Dziewonski, A.M. (2008). Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. Journal of Geophysical Research, 113(B06306), doi:10.1029/2007JB005169.
  20. Lay, T., Ammon, C.J., Hutko, A.R. and Kanamori, H. (2010). Effects of kinematic constraints on teleseismic finite-source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bulletin of the Seismological Society of America, 100(3), 969-994, doi: 10.1785/0120090274.
  21. Lee, J.-W., Park, E.H., Park, S.-C. and Woo, S.-B. (2015). Development of the global tsunami prediction system using the finite fault model and the cyclic boundary condition. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 391-405, doi:10.9765/KSCOE.2015.27.6.391 (in Korean).
  22. Liu, P.L.F., Woo, S.-B. and Cho, Y.-S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
  23. Lynett, P., Weiss, R., Renteria, W., Morales, G.D.L.T., Son, S., Arcos, M.E.M. and MacInnes, B.T. (2013). Coastal impacts of the March 11th Tohoku, Japan tsunami in the Galapagos Islands. Pure and Applied Geophysics, 170(6), 1189-1206, doi:10.1007/s00024-012-0568-3.
  24. Meinig, C., Stalin, S.E., Nakamura, A.I. and Milburn, H.B. (2005). Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA Pacific Marine Environmental Laboratory (PMEL), Technical Report.
  25. Mikami, T., Shibayama, T., Esteban, M. and Matsumaru, R. (2012). Field survey of the 2011 Tohoku earthquake and tsunami in Miyagi and Fukushima prefectures. Coastal Engineering Journal, 54(1250011), doi: http://dx.doi.org/10.1142/S0578563412500118.
  26. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. Geophysical Research Letters, 38(L00G14), doi:10.1029/2011GL049210.
  27. Mori, N. and Takahashi, T. (2012). Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coastal Engineering Journal, 54(1250001), doi: http://dx.doi.org/10.1142/S0578563412500015.
  28. Murotani, S., Iwai, M., Satake, K., Shevchenko, G. and Loskutov, A. (2015). Tsunami Forerunner of the 2011 Tohoku Earthquake Observed in the Sea of Japan. Pure and Applied Geophysics, 172(3), 683-697, doi:10.1007/s00024-014-1006-5.
  29. National Institute of Meteorological Research (2013). Research for the Meteorological and Earthquake Observation Technology and its Application (II), Research report, 11-1360395-000443-01 (in Korean).
  30. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.
  31. Park, S.-C. and Lee, J.-W. (2014). Fundamental research for improvement of tsunami warning system of KMA. Proceedings of Earthqauke Engineering Society of Korea Conference 2014, 85-86 (in Korean).
  32. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937, doi:10.1016/S0098-3004(02)00013-4.
  33. Percival, D.B., Denbo, D.W., Eblé, M.C., Gica, E., Mofjeld, H.O., Spillane, M. C., Tang, L. and Titov, V.V. (2011). Extraction of tsunami source coefficients via inversion of DART ? buoy data. Natural hazards, 58(1), 567-590, doi:10.1007/s11069-010-9688-1.
  34. Piatanesi, A., Tinti, S. and Pagnoni, G. (2001). Tsunami waveform inversion by numerical finite-elements Green's functions. Natural Hazards and Earth System Science, 1, 187-194, doi:10.5194/nhess-1-187-2001.
  35. Satake, K., Fujii, Y., Harada, T. and Namegaya, Y. (2013). Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bulletin of the seismological society of America, 103(2B), 1473-1492, doi:10.1785/0120120122.
  36. Shuto, N. (1991). Numerical simulation of tsunamis-Its present and near future. Natural Hazards, 4(2), 171-191, doi:10.1007/BF00162786.
  37. Tanioka, Y. (2000). Generation of tsunamis in the Okhotsk Sea caused by the 1994 great Kuril earthquake. Pure and Applied Geophysics, 157(6), 977-988, doi:10.1007/s000240050013.
  38. Tanioka, Y. and Satake, K. (1996a). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861-864, doi:10.1029/96GL00736.
  39. Tanioka, Y. and Sataka, K. (1996b). Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophysical Research Letters, 23(13), 1549-1552, doi:10.1029/96GL01479.
  40. Tromp, J., Komattisch, D. and Liu, Q. (2008). Spectral-element and adjoint methods in seismology. Communications in Computational Physics, 3(1), 1-32.
  41. Wilson, R.I., Admire, A.R., Borrero, J.C., Dengler, L.A., Legg, M.R., Lynett, P., McCrink, T.P., Miller, K.M., Ritchie, A., Sterling, K. and Whitmore, P.M. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics, 170(6), 1127-1147, doi:10.1007/s00024-012-0527-z.
  42. Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S.I., Shinohara, M. and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 38(L00G21), doi:10.1029/2011GL050098.
  43. Yoon, S.B., Baek, U., Park, W.K. and Bae, J.S. (2012). Practical forecast-warning system for distant tsunamis. Journal of Korea Water Resources Association. 45(10), 997-1008, doi:10.3741/ JKWRA.2012.45.10.997 (in Korean).
  44. Yoshida, Y., Ueno, H., Muto, D. and Aoki, S. (2011). Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data. Earth, Planets and Space, 63(7), 565-569, doi:10.5047/eps.2011.05.011.
  45. Yoshimoto, M., Watada, S., Fujii, Y. and Satake, K. (2016). Source estimate and tsunami forecast from far-field deep-ocean tsunami waveforms-the 27 February 2010 Mw 8.8 Maule earthquake. Geophysical Research Letters, 43, 659-665, doi:10.1002/2015GL067181.
  46. Yue, H. and Lay, T. (2011). Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters, 38, L00G09, doi:10.1029/2011GL048700.
  47. Yue, H., Lay, T., Rivera, L., Bai, Y., Yamazaki, Y., Cheung, K.F., Hill, E.M., Sieh, K., Kongko, W. and Muhari, A. (2014). Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations. Journal of Geophysical Research: Solid Earth, 119, 5574-5593, doi:10.1002/2014JB011082.

Cited by

  1. Classification of Tsunami Hazard Area along the Eastern Coast of South Korea based on Improved Tsunami Scenario Database vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.303