DOI QR코드

DOI QR Code

Comparison Analysis of Quality Assessment Protocols for Image Fusion of KOMPSAT-2/3/3A

KOMPSAT-2/3/3A호의 영상융합에 대한 품질평가 프로토콜의 비교분석

  • 정남기 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과) ;
  • 오관영 (서울시립대학교 공간정보공학과) ;
  • 박숭환 (서울시립대학교 공간정보공학과) ;
  • 이승찬 ((주)지오셋아이)
  • Received : 2016.09.21
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

Many image fusion quality assessment techniques, which include Wald's, QNR and Khan's protocols, have been proposed. A total procedure for the quality assessment has been defined as the quality assessment protocol. In this paper, we compared the performance of the three protocols using KOMPSAT-2/3/3A satellite images, and tested the applicability to the fusion quality assessment of the KOMPSAT satellite images. In addition, we compared and analyzed the strengths and weaknesses of the three protocols. We carried out the qualitative and quantitative analysis of the protocols by applying five fusion methods to the KOMPSAT test images. Then we compared the quantitative and qualitative results of the protocols from the aspects of the spectral and spatial preservations. In the Wald's protocol, the results from the qualitative and quantitative analysis were almost matched. However, the Wald's protocol had the limitations 1) that it is timeconsuming due to downsampling process and 2) that the fusion quality assessment are performed by using downsampled fusion image. The QNR protocol had an advantage that it utilizes an original image without downsampling. However, it could not find the aliasing effect of the wavelet-fused images in the spectral preservation. It means that the spectral preservation assessment of the QNR protocol might not be perfect. In the Khan's protocol, the qualitative and quantitative analysis of the spectral preservation was not matched in the wavelet fusion. This is because the fusion results were changed in the downsampling process of the fused images. Nevertheless, the Khan's protocol were superior to Wald's and QNR protocols in the spatial preservation.

최근 영상융합 기법의 품질평가를 위하여 다양한 방법이 제안되었다. 품질평가를 위한 일련의 과정들을 통틀어 프로토콜이라 정의되었으며, Wald's 프로토콜, QNR 프로토콜, Khan's 프로토콜 등의 다양한 품질평가 프로토콜이 제시되었다. 본 논문에서는 KOMPSAT-2/3/3A 위성영상을 활용하여 제시된 세 가지 품질평가 프로토콜을 각기 다른 융합 기법에 적용하였을 때 나타나는 결과를 비교하고, KOMPSAT 위성영상에의 활용가능성을 알아보는 한편 각 프로토콜의 장단점을 분석하였다. 이 때 기존의 연구와 달리 융합 영상의 품질이 시각적으로 뚜렷하게 구분되는 융합 기법을 사용하여 육안 분석을 통한 정성적 분석을 진행함과 동시에 각 품질평가 프로토콜을 통한 정량적 분석을 수행하였다. 이를 통해 분광정보 보존의 측면과 공간 정보 보존의 측면에서 정성적 결과와 정량적 결과의 유사성을 파악하였다. 분석 결과, 각 프로토콜의 과정상 특징을 반영하는 결과를 나타내었다. Wald's 프로토콜의 경우 정성적/정량적 분석 결과가 동일하였으나, 프로토콜 수행 과정이 번거로우며 특히 영상의 공간해상도를 강제로 저하시킨 후 융합을 진행하여도 그 결과가 실제 공간해상도의 융합 결과와 동일하다는 전제를 가정하고 있다는 한계점이 존재하였다. QNR 프로토콜의 경우 원 영상의 융합 결과를 평가할 수 있다는 장점이 존재하였다. 그러나 분광정보 보존 분석 시 Wavelet 융합 결과의 aliasing 현상을 반영하지 못하는 등의 불안정성이 존재하여 프로토콜을 활용할 때 주의해야하는 단점이 있었다. Khan's 프로토콜의 경우 분광정보 보존 분석의 경우에 정성적/정량적 분석 결과가 Wavelet 융합 기법에서 일치하지 않았다. 이는 품질평가 시 공간해상도를 강제로 저하시킬 때 융합 영상의 품질이 변하여 발생하는 문제였다. 공간정보 보존 분석의 경우 Wald's 프로토콜의 한계점과 QNR 프로토콜의 단점을 모두 보완하여 품질평가를 수행하는 프로토콜이라 할 수 있음을 확인하였다.

Keywords

References

  1. Aiazzi, B., L. Alparone, S. Baronti and A. Garzelli, 2002. Context-Driven fusion of high spatial and spectral data based on oversampled multiresolution analysis, IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2300-2312. https://doi.org/10.1109/TGRS.2002.803623
  2. Aiazzi, B., L. Alparone, S. Baronti, A. Garzelli and M. Selva, 2006. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery, Photogrammetric Engineering and Remote Sensing, 72(5): 591-596. https://doi.org/10.14358/PERS.72.5.591
  3. Aiazzi, B., S. Baronti and M. Selva, 2007. Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3230-3239. https://doi.org/10.1109/TGRS.2007.901007
  4. Alparone, L., S. Baronti, A. Garzelli and F. Nencini, 2004. A global quality measurement of pan-sharpened multispectral imagery, IEEE Geoscience and Remote Sensing Letters, 1(4): 313-317. https://doi.org/10.1109/LGRS.2004.836784
  5. Alparone, L., B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini and M. Selva, 2008. Multispectral and panchromatic data fusion assessment without reference, Photogrammetric Engineering and Remote Sensing, 74(2): 193-200. https://doi.org/10.14358/PERS.74.2.193
  6. Chaves, P.S.Jr. and A.Y. Kwarteng, 1989. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis, Photogrammetric Engineering and Remote Sensing, 55(3): 339-348.
  7. Chavez, P.S.Jr., S.C. Sides and J.A. Anderson, 1991. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic, Photogrammetric Engineering and Remote Sensing, 57(3): 265-303.
  8. Choi, M.-J., 2006. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter, IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1672-1682. https://doi.org/10.1109/TGRS.2006.869923
  9. Choi, J.W. and Y.I. Kim, 2010. Pan-sharpening algorithm of high-spatial resolution satellite image by using spectral and spatial characteristics, Journal of the Korean Society for Geo-Spatial Information System, 18(2): 79-86 (in Korean with English abstract).
  10. Gangkofner, U. and D. Holcomb, 2008. HPF Resolution Merge, In: ERDAS IMAGINE Help, Leica Geosystems Geospatial Imaging, LLC, 2008.
  11. Geiger, B.C. and G. Kubin, 2012. Relative information loss in the PCA, Proc. of the IEEE Information Theory Workshop, 562-566.
  12. Gillespie, A.R., A.B. Kahle, and R.E. Walker, 1987. Color enhancement of highly correlated images, II. Channel ratio and "Chromaticity" transformation techniques, Remote Sensing of Environment, 22(1): 343-365. https://doi.org/10.1016/0034-4257(87)90088-5
  13. Khan, M.M., L. Alparone and J. Chanussot, 2009. Pansharpening quality assessment using the modulation transfer functions of instruments, IEEE Transactions on Geoscience and Remote Sensing, 47(11): 3880-3891. https://doi.org/10.1109/TGRS.2009.2029094
  14. Klonus, S. and M. Ehlers, 2007. Image fusion using the Ehlers spectral characteristics preservation algorithm, GIScience and Remote Sensing, 44(2): 93-116. https://doi.org/10.2747/1548-1603.44.2.93
  15. Klonus, S. and M. Ehlers, 2009. Performance of evaluation methods in image fusion, International Conference on Information Fusion, Seattle, USA, July 6-9, 2009, 1409-1416.
  16. Laben, C.A. and B.V. Brower, 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, U.S. Patent 6,011,875.
  17. Lee, H.-S., K.-Y. Oh and H.-S. Jung, 2014. Comparative analysis of image fusion methods according to spectral responses of high-resolution optical sensors, Korean Journal of Remote Sensing, 30(2): 227-239 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.2.6
  18. Lee, S., 2015. Reduction of spectral distortion in PAN-sharpening using spectral adjustment and anisotropic diffusion, Korean Journal of Remote Sensing, 31(6), 571-582 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.6.7
  19. Lillo-Saavedra, M. and C. Gonzalo, 2006. Spectral or spatial quality for fused satellite imagery? A trade-off solution using the wavelet a'trous algorithm, International Journal of Remote Sensing, 27(7): 1453-1464. https://doi.org/10.1080/01431160500462188
  20. Nunez, J., X. Otazu, O. Fors, A. Prades, V. Pala and R. Arbiol, 1999. Multiresolution-Based image fusion with additive wavelet decomposition, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1204-1211. https://doi.org/10.1109/36.763274
  21. Oh, K.-Y., H.-S. Jung and K.-J. Lee, 2012. Comparison of image fusion methods to merge KOMPSAT-2 panchromatic and multispectral images, Korean Journal of Remote Sensing, 28(1): 39-54 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.1.039
  22. Oh, K.-Y., H.-S. Jung, N.-K. Jeong and K.-J. Lee, 2014. The comparative analysis of image fusion results by using KOMPSAT-2/3 images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(2): 117-132 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.2.117
  23. Oh, K.-Y., H.-S. Jung and N.-K. Jeong, 2015. Pansharpening method for KOMPSAT-2/3 high-spatial resolution satellite image, Korean Journal of Remote Sensing, 31(2), 161-170 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.2.10
  24. Ranchin, T. and L. Wald, 2000, Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation, Photogrammetric Engineering and Remote Sensing, 66(1): 49-61.
  25. Sangwine, S.J. and T.A. Ell, 2000. Color image filters based on hypercomplex convolution, IEEE Vision, Image and Signal Processing, 147(2): 89-93. https://doi.org/10.1049/ip-vis:20000211
  26. Siddiqui, Y., 2003. The modified IHS method for fusing satellite imagery, American Society for Photogrammetry and Remote Sensing, Anchorage, USA, May. 5-9, 2003, in CD.
  27. Tu, T. M., P.S. Huang, C.L. Hung, and C.P. Chang, 2004. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery, IEEE Geoscience and Remote Sensing Letters, 1(4): 309-312. https://doi.org/10.1109/LGRS.2004.834804
  28. Wald, L., T. Ranchin, and M. Mangolini, 1997. Fusion of satellite images of different spatial resolutions: Assesing the quality of resulting images, Photogrammetric Engineering and Remote Sensing, 63(6): 691-699.
  29. Wang, Z. and A.C. Bovik, 2002. A universal image quality index, IEEE Signal Processing Letters, 9(3): 81-84. https://doi.org/10.1109/97.995823
  30. Zhang, Y., 2004. Understanding image fusion, Photogrammetric Engineering and Remote Sensing, 70(6): 657-661. https://doi.org/10.14358/PERS.70.4.427
  31. Zhou, J., D.L. Civco and J.A. Silander, 1998. A wavelet transform method to merge Landsat TM and SPOT panchromatic data, International Journal of Remote Sensing, 19(4): 743-757. https://doi.org/10.1080/014311698215973

Cited by

  1. KOMPSAT-3 영상을 활용한 도심지 그림자 영역의 탐지 및 보정 방법 vol.33, pp.6, 2016, https://doi.org/10.7780/kjrs.2017.33.6.3.4
  2. Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery vol.11, pp.6, 2016, https://doi.org/10.3390/rs11060633