DOI QR코드

DOI QR Code

Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin

포항분지 덮개암에 대한 지화학적 반응 실험 및 모델링 연구

  • Kim, Seon-ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2016.06.27
  • Accepted : 2016.10.31
  • Published : 2016.10.28

Abstract

This study aims to identify the mineraloical and petrographical characteristics of caprock from drilling cores of Pohang basin as a potential $CO_2$ storage site. Experiments and modeling were conducted in order to investigate the geochemical and mineralogical caprock effects of carbon dioxide. A series of autoclave experiments were conducted to simulate the interaction in the $scCO_2$-caprock-brine using a high pressure and temperature cell at $50^{\circ}C$ and 100 bar. Geochemical and mineralogical alterations after 15 days of $scCO_2$-caprock-brine sample reactions were quantitatively examined by XRD, XRF, ICP-OES investigation. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of brine were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 11.0.4 geochemical simulator. Results from XRD analysis for caprock sample showed that major compositional minerals are quartz, plagioclase, and K-feldspar, and muscovite, pyrite, siderite, calcite, kaolinite and montnorillonite were included on a small scale. Results from ICP-OES analysis for brine showed that concentration of $Ca^{2+}$, $Na^+$, $K^+$ and $Mg^{2+}$ increased due to dissolution of plagioclase, K-feldspar and muscovite. Results of modeling for the period of 100 years showed that the recrystallization of kaolinite, dawsonite and beidellite, at the expense of plagioclase and K-feldspar is characteristic. Volumes of newly precipitation minerals and minerals passing into brine were balanced, so the porosity remained nearly unchanged. Experimental and modeling results indicate the interaction between caprock and $scCO_2$ during geologic carbon sequestration can exert significant impacts in brine pH and solubility/stability of minerals.

이 연구는 이산화탄소 지중저장 후보지의 하나로 알려진 포항분지 덮개암의 광물학적 및 암석학적 특성을 파악하고, 실험과 지화학 모델링을 이용하여 이산화탄소 주입으로 인해 발생할 수 있는 덮개암의 지화학적 및 광물학적 영향을 규명하였다. 실험은 이산화탄소 지중저장 조건에 해당하는 $50^{\circ}C$와 100 bar의 고온고압조건에서 덮개암 6 g과 염수 60 ml를 고압셀에 넣어 15일 동안 반응시켰다. 반응 후 덮개암과 염수 시료의 지화학적 및 광물학적 변화를 확인하기 위해 XRD, XRF, ICP-OES 등의 분석을 통해 정량적으로 규명하였다. 또한 덮개암의 광물학적 연구 결과와 염수의 물리화학적 변수 자료들을 이용하여 지화학 모델링(The Geochemist's Workbench 11.0.4)을 수행하였다. 덮개암의 광물학적 분석 결과, 석영, 사장석, K-장석으로 주로 구성되어 있고, 소량의 운모, 황철석, 능철석, 방해석, 카올리나이트와 몬모릴로나이트로 이루어져 있었다. 덮개암과의 반응 후 염수의 이온 농도 분석 결과, 사장석, K-장석과 몬모릴로나이트 또는 운모와 같이 Mg를 포함하는 광물의 용해 반응에 의하여 $Ca^{2+}$, $Na^+$, $K^+$, $Mg^{2+}$ 이온들의 농도가 증가하였다. 100 년 동안 모델링한 결과, 사장석와 K-장석은 용해되고, 카올리나이트, 도소나이트, 베이덜라이트는 재결정화되어, 암석의 공극률 변화에는 큰 영향을 주지 않을 것으로 판단되었다. 실험 및 모델링 결과는 이산화탄소를 지중저장하는 동안 덮개암과 초임계 이산화탄소와의 상호반응에 의해 염수의 pH, 광물의 용해도과 안정성 등에 중요한 영향을 미칠 수 있음을 보여주었다.

Keywords

References

  1. Armitage, P.J., Worden, R.H., Faulkner, D.R., Aplin, A.C., Butcher, A.R. and Iliffe, J. (2010) Diagenetic and Sedimentary controls on porosity in lower carboniferous fine-grained lithologies, Krechba field, Algeria: a petrological study of caprock to a carbon capture site. Marine and Petroleum Geology, v.27. p.1395-1410. https://doi.org/10.1016/j.marpetgeo.2010.03.018
  2. Bachu, S., Gunter, W.D. and Perkins, E. H. (1994) Aquifer disposal of $CO_2$: hydrodynamic and mineral trapping. Energy Convers, Manag, v.35, p.269-279. https://doi.org/10.1016/0196-8904(94)90060-4
  3. Boe, R. and Zweigel, P. (2001) Characterisation of the Nordland Shale in the Sleipner are by XRD analysis - A contribution th the Saline Aquifer $CO_2$ Storage (SACS) project. SINTEF Technical Reports.
  4. Boggs, Sam, Jr. (2009) Petrology of Sedimentary Rocks (Hardcover, 2nd Edition), Cambridge University Press, p.150.
  5. Carey, J.W., Wigand, M., Chipera, S.J., WoldeGabriel, G., Pawar, R., Lichtner, P.C., Wehner, S.C., Raines, M.A. and Guthrie, J.G.D. (2007) Analysis and performance of oil well cement with 30 years of $CO_2$ exposure from the SACROC Unit, West Texas, USA. Int. J. Greenh. Gas Control, v.1, p.75-85. https://doi.org/10.1016/S1750-5836(06)00004-1
  6. Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby. G.A., Holloway, S. and Johannessen, P.N. (2004) Geological reservoir characterization of a $CO_2$ storage site: The Utsira Sand, Sleipner, Northern North Sea. Energy, v.29, p.1371-1381. https://doi.org/10.1016/j.energy.2004.03.071
  7. Czernichowsi-Lauriol, I., Rochelle, C., Gaus, I., Azaroual, M., Pearce, J. and Durst, P. (2006) Geochemical interactions between $CO_2$, pore-waters and reservoir rocks: lessons learned from laboratory experiments, field studies and computer simulation. In: Lombardi, S., Altunina, S.E., Beaubien, S.E. (Eds.), Advances in the geological storage of carbon dioxide: international approaches to reduce anthropogenic greenhouse gas emissions. Springer, Dordrecht, Netherlands, p.157-174.
  8. Downey, M.W. (1984) Evaluating seals for hydrocarbon accumulations. APPG Bulletin, v.68, p.1752-1763.
  9. Espinoza, D.N. and Santamaria, J.C. (2012) Clay interacition with liquid and supercritical $CO_2$: the relevance of electrical and capillary forces. Int. J. Greenh. Gas Control, v.10, p.351-362. https://doi.org/10.1016/j.ijggc.2012.06.020
  10. Eyre, P.R. (1987) Source of Salts in the Waianae part of the Pearl Harbor Aquifer Near Barbers Point Water Tunnel, Oahu, Hawaii. U.S. Geological Survey, Water-Resources Investigations Report, 87-4247, 48p.
  11. Faye, L., Peng, L., Graig, G., Sheila, W.H., Yee, S., Helge, H. and Chen, Z. (2012) $CO_2$-brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relebant literature, Int. J. Greenh. Gas Control, v.7, p.153-167. https://doi.org/10.1016/j.ijggc.2012.01.012
  12. Forster, A., Springer, N., Beutler, G., Luckert, J., Norden, B. and Lindgren, H. (2007) The mudstone-dominated caprock system of the $CO_2$-storage site at Ketzin, Germany. In: AAPG Annual Convention, Long Beach, CA.
  13. Galan, E. and Aparicio, P. (2014) Experimental study on the role of clays as sealing materials in the geological storage of carbon dioxide. Applied Clay Science, v.87, p.22-27. https://doi.org/10.1016/j.clay.2013.11.013
  14. Gueguen, Y. and Palciauskas, V. (1994) Introduction to the physics of Rocks. Princeton University Press.
  15. Hitchen, B. (1996) Aquifer Disposal of Carbon Dioxide, Hydrologic and Mineral Trapping. Geoscience Publishing Sherwood Park, Alberta, Canada.
  16. Izgec, O., Demiral, B., Bertinm, H. and Akin, S. (2008) $CO_2$ injection into saline carbonate aquifer formations. I. Laboratory investigation. Transport in Porous Media, v.72, P.1-24. https://doi.org/10.1007/s11242-007-9132-5
  17. Kjoller, C., Weibel, R., Bateman, K., Laiser, T., Nielsen, L.H., Frykman, P. and Springer, N. (2011) Geochemical impacts of $CO_2$ storage in saline aquifers with various mineralogy-results from laboratory experiments and reactive geochemical modeling. Energy Procedia, v.4, p.4724-4731. https://doi.org/10.1016/j.egypro.2011.02.435
  18. Lee, B.J. and Song, K.Y. (1995) Interpretation of geologic structure in Tertiary Pohang basin, Korea. Econ. Environ. Geol., v.28, n.1, p.69-77.
  19. Marchetti, C. (1977) On geoengineering and the $CO_2$ problem. Clim, Change, v.1, p.59-68. https://doi.org/10.1007/BF00162777
  20. Mitchell, J.K. and Soga, L. (2005) Fundamentals of Soil Behavior. 3rd ed. Wiley.
  21. Park, E.D., Wang, S.K., Kim, S.O. and Lee, M.H. (2014) The effects of the carbon dioxide stored in geological formations on the mineralogical and geochemical alterations of phyllosilicate minerals. Jourmal of the Geological Society of Korea, v.50, n.2, p.231-240.
  22. Park, J.Y., Lee, M.H. and Wang, S.K. (2013) Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at $CO_2$ Storage Condition. Econ. Environ. Geol., v.46, n.3, p.221-234. https://doi.org/10.9719/EEG.2013.46.3.221
  23. Rochelle, C.A., Czernichowski-Lauriol, I. and Milodowski, A.E. (2004) The impact of chemical reactions on $CO_2$ storage in geological formations: a brief review. Geological Society, London, Special Publications, v.233, p.87-106. https://doi.org/10.1144/GSL.SP.2004.233.01.07
  24. Son, M. (1998) Formation and Evolution of Tertiary Miocene Basins in southeastern Korea: Structural and Paleomagnetic approaches. Ph. D. Thesis, Pusan National University, Pusan, p.233.
  25. Wang, S.K. (2009) Geological carbon sequestration: Now and After. KIC News, v.12, p.21-30.
  26. Watson, M.N., Daniel, R.F., Tingate, P.R. and Gibson-Poole, C.M. (2005) $CO_2$ related seal capacity enhancement in mudstones: evidence from the pine lodge natural $CO_2$ accumulation, Otway basin, Australia. International Conference on Greenhouse Gas Control Technologies. Vancouver, Canada, 2004.
  27. Yoon, S. (2010) Tectonic History of the Tertiary Yangnam and Pohang Basins, Korea. Journal of the Geological Society of Korea, v.46, n.2, p.95-110.