DOI QR코드

DOI QR Code

Investigation on Fe-Hf-B-Nb-P-C Soft Magnetic Powders Prepared by High-Pressure Gas Atomization

고압 가스 분무법을 이용한 Fe-Hf-B-Nb-P-C 연자성 분말 제조 및 특성 평가

  • 정재원 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 양동열 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 김기봉 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 이준홍 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 김영자 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 임태수 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 양상선 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 이민하 (한국생산기술연구원, 뿌리산업연구부문) ;
  • 김휘준 (한국생산기술연구원, 뿌리산업연구부문) ;
  • 김용진 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부)
  • Received : 2016.09.20
  • Accepted : 2016.10.20
  • Published : 2016.10.28

Abstract

In this study, ultra-fine soft-magnetic micro-powders are prepared by high-pressure gas atomization of an Fe-based alloy, Fe-Hf-B-Nb-P-C. Spherical powders are successfully obtained by disintegration of the alloy melts under high-pressure He or $N_2$ gas. The mean particle diameter of the obtained powders is $25.7{\mu}m$ and $42.1{\mu}m$ for He and $N_2$ gas, respectively. Their crystallographic structure is confirmed to be amorphous throughout the interior when the particle diameter is less than $45{\mu}m$. The prepared powders show excellent soft magnetic properties with a saturation magnetization of 164.5 emu/g and a coercivity of 9.0 Oe. Finally, a toroidal core is fabricated for measuring the magnetic permeability, and a ${\mu}_r$ of up to 78.5 is obtained. It is strongly believed that soft magnetic powders prepared by gas atomization will be beneficial in the fabrication of high-performance devices, including inductors and motors.

Keywords

References

  1. Y. K. Joon, and P. Y. Kwan: J. KIEEME, 9 (1996) 76.
  2. H. Kim: J. Korea Magn. Soc., 21 (2011) 77. https://doi.org/10.4283/JKMS.2011.21.2.077
  3. Y. Liu, Y. Yi, W. Shao and Y. Shao: J. Magn. Magn. Mater., 330 (2013) 119. https://doi.org/10.1016/j.jmmm.2012.10.043
  4. L. Svensson, K. Frogner, P. Jeppsson, T. Cedell and M. Andersson: J. Magn. Magn. Mater., 324 (2012) 2717. https://doi.org/10.1016/j.jmmm.2012.03.049
  5. G. Herzer: Acta Mater., 61 (2013) 718. https://doi.org/10.1016/j.actamat.2012.10.040
  6. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry and S. Li: J. Non-Cryst. Solids, 391 (2014) 61. https://doi.org/10.1016/j.jnoncrysol.2014.03.010
  7. M. H. Lee and H. R. Oh: KR 10-2015-0082316 (2015).
  8. T. Ma, M. Yan and W. Wang: Scr. Mater., 58 (2008) 243. https://doi.org/10.1016/j.scriptamat.2007.10.017
  9. S. Lagutkin, L. Achelis, S. Sheikhaliev, V. Uhlenwinkel and V. Srivastava: Mater. Sci. Eng., A, 383 (2004) 1. https://doi.org/10.1016/j.msea.2004.02.059
  10. K. Yoshida, M. Bito, J. Kageyama, Y. Shimizu, M. Abe and A. Makino: AIP Advances, 6 (2016) 055933. https://doi.org/10.1063/1.4944765
  11. A. Unal: Mater. Sci. Technol., 3 (1987) 1029. https://doi.org/10.1179/mst.1987.3.12.1029
  12. G. Antipas: Metals, 2 (2012) 202. https://doi.org/10.3390/met2020202
  13. M. Nabialek, P. Pietrusiewicz, M. Dospial, M. Szota, J. Gondro, K. Gruszka, A. Dobrzanska-Danikiewicz, S. Walters and A. Bukowska: J. Alloys Compd., 615 (2014) S56. https://doi.org/10.1016/j.jallcom.2013.12.236
  14. J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam and H.N. Jones: Acta Mater., 46 (1998) 1861. https://doi.org/10.1016/S1359-6454(97)00436-9
  15. C.H. Chia, S. Zakaria, M. Yusoff, S.C. Goh, C.Y. Haw, Sh. Ahmadi, N.M. Huang and H.N. Lim: Ceram. Int., 36 (2010) 605. https://doi.org/10.1016/j.ceramint.2009.10.001