DOI QR코드

DOI QR Code

Coloration Study of Red/Yellow β-FeOOH Nanorod using NH4OH Solution

NH4OH를 이용한 적황색 β-FeOOH 나노로드 길이에 따른 색상제어 연구

  • Yu, Ri (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, IllJoo (Department of Chemistry and Biology, Korea Science Academy of KAIST) ;
  • Yun, JiYeon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Eun-Young (Department of Chemistry and Biology, Korea Science Academy of KAIST) ;
  • Pee, Jae-Hwan (Ceramic Ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, YooJin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 유리 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김일주 (카이스트 부설 한국과학영재학교 화학생물학부) ;
  • 윤지연 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 최은영 (카이스트 부설 한국과학영재학교 화학생물학부) ;
  • 피재환 (한국세라믹기술원 도자세라믹센터) ;
  • 김유진 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2016.07.21
  • Accepted : 2016.08.11
  • Published : 2016.10.28

Abstract

Fe-based pigments have attracted much interest owing to their eco-friendliness. In particular, the color of nanosized pigments can be tuned by controlling their size and morphology. This study reports on the effect of length on the coloration of ${\beta}$-FeOOH pigments prepared using an $NH_4OH$ solution. First, rod-type ${\beta}$-FeOOH is prepared by the hydrolysis of $FeCl_3{\cdot}6H_2O$ and $NH_4OH$. When the amount of $NH_4OH$ is increased, the length of the rods decreases. Thus, the length of the nanorods can be adjusted from 10 nm to 300 nm. The color of ${\beta}$-FeOOH changes from orangered to yellow depending on the length of ${\beta}$-FeOOH. The color and phase structure of ${\beta}$-FeOOH is characterized by UV-vis spectroscopy, CIE Lab color parameter measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

Keywords

References

  1. C. Gong, D. Chen, X. Jiao and Q. Wang : J. Mater. Chem., 12 (2002) 1844. https://doi.org/10.1039/b201243j
  2. E. Matijevic and P. Scheiner : J. Colloid Interface Sci., 63 (1978) 509. https://doi.org/10.1016/S0021-9797(78)80011-3
  3. R. Yu, J. H. Pee, Y. Kim and K. J. Kim: J. Nanosci. Nanotech., 11 (2011) 6283. https://doi.org/10.1166/jnn.2011.4379
  4. R. Yu, J. H. Pee and Y. Kim: J. Nanosci. Nanotech., 14 (2014) 2667. https://doi.org/10.1166/jnn.2014.8482
  5. J. Y. Yun, R. Yu and Y. Kim: J. Nanosci. Nanotech., in press.
  6. J. Cai, J. Gao, A. Navrotsky and S. L. Suib: Chem. Mater., 13 (2001) 4595. https://doi.org/10.1021/cm010310w
  7. M. Zhang, K. Chen, X. Chen, X. Peng, X. Sun and D. Xue: Cryst. Eng. Comm., 17 (2015) 1917. https://doi.org/10.1039/C4CE02543A
  8. X. Rao, X. Su, C. Yang, J. Wang, X. Zhena and D. Ling: Cryst. Eng. Comm., 15 (2013) 7250. https://doi.org/10.1039/c3ce40430g
  9. C. Wei and Z. Nan: Mater. Chem. Phys., 127 (2011) 220. https://doi.org/10.1016/j.matchemphys.2011.01.062
  10. M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal and A. M. Aisiri: Nanomaterials, M. M. Rahman (Ed.), INTECH (2011) 356.
  11. I. V. Chernyshova, S. Ponurangam and P. Somasundra: Phys, Chem. Phys., 12 (2010) 14045. https://doi.org/10.1039/c0cp00168f
  12. J. Yue, X. Jiang and A. Tu: J. Nanopart. Res., 13 (1990) 3961.
  13. N. K. Chaudhari and J. S. Yu: J. Phys. Chem. C, 112 (2008) 19957. https://doi.org/10.1021/jp808589y