DOI QR코드

DOI QR Code

WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Hieu, Dang Van (Department of Mathematics Vietnam National University)
  • Received : 2015.05.07
  • Published : 2016.10.31

Abstract

In this paper, we introduce three subgradient extragradient algorithms for solving pseudomonotone equilibrium problems. The paper originates from the subgradient extragradient algorithm for variational inequalities and the extragradient method for pseudomonotone equilibrium problems in which we have to solve two optimization programs onto feasible set. The main idea of the proposed algorithms is that at every iterative step, we have replaced the second optimization program by that one on a specific half-space which can be performed more easily. The weakly and strongly convergent theorems are established under widely used assumptions for bifunctions.

Keywords

References

  1. P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), no. 2, 271-283. https://doi.org/10.1080/02331934.2011.607497
  2. P. K. Anh, Ng. Buong, and D. V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal. 93 (2014), no. 10, 2136-2157. https://doi.org/10.1080/00036811.2013.872777
  3. P. K. Anh and D. V. Hieu, Parallel and sequential hybrid methods for a finite family of asymptotically quasi ${\phi}$-nonexpansive mappings, J. Appl. Math. Comput. 48 (2015), no. 1-2, 241-263. https://doi.org/10.1007/s12190-014-0801-6
  4. P. K. Anh and D. V. Hieu, Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems, Vietnam J. Math. (2015), DOI:10.1007/s10013-015-0129-z.
  5. P. N. Anh, J. K. Kim, and N. D. Hien, A cutting hyperplane method for solving pseudomonotone non-Lipschitzian equilibrium problems, J. Inequal. Appl. (2012), 2012:288, 16 pp. https://doi.org/10.1186/1029-242X-2012-16
  6. P. N. Anh, J. K. Kim, and L. D. Muu, An extragradient algorithm for solving bilevel pseudomonotone variational inequalities, J. Global Optim. 52 (2012), no. 3, 627-639. https://doi.org/10.1007/s10898-012-9870-y
  7. M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31-43. https://doi.org/10.1007/BF02192244
  8. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Program. 63 (1994), no. 1-4, 123-145.
  9. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  10. Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), no. 4-5, 827-845. https://doi.org/10.1080/10556788.2010.551536
  11. Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318-335. https://doi.org/10.1007/s10957-010-9757-3
  12. P. Daniele, F. Giannessi, and A. Maugeri, Equilibrium Problems and Variational Models, Kluwer, 2003.
  13. B. V. Dinh, P. G. Hung, and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35 (2014), no. 5, 539-563. https://doi.org/10.1080/01630563.2013.813857
  14. F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin, 2002.
  15. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Math., vol. 28. Cambridge University Press, Cambridge, 1990.
  16. D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal. (2016); DOI:10.3846/13926292.2016.1183527.
  17. D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2, 373-388. https://doi.org/10.4134/JKMS.2015.52.2.373
  18. J. K. Kim and P. N. Anh, Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems, J. Korean. Math. Soc. 49 (2012), no. 1, 187-200. https://doi.org/10.4134/JKMS.2012.49.1.187
  19. G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody 12 (1976), 747-756.
  20. G. Mastroeni, On auxiliary principle for equilibrium problems, Publ. Dipart. Math. Univ. Pisa 3 (2000), 1244-1258.
  21. L. D. Muu and W. Oettli, Convergence of an adative penalty scheme for finding constrained equilibria, Nonlinear Anal. TMA 18 (1992), no. 12, 1159-1166. https://doi.org/10.1016/0362-546X(92)90159-C
  22. N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230-1241. https://doi.org/10.1137/050624315
  23. N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), no. 1, 191-201. https://doi.org/10.1007/s10957-005-7564-z
  24. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  25. T. D. Quoc, L. D. Muu, and N. V. Hien, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), 749-776. https://doi.org/10.1080/02331930601122876
  26. N. V. Quy, V. H. Nguyen, and L. D. Muu, On the Cournot-Nash oligopolistic market equilibrium problem with concave cost function, Epreprint. Hanoi Institute of Mathematics, 2 (2005).
  27. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, 189-202. https://doi.org/10.1007/s101079900113
  28. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
  29. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560

Cited by

  1. Extragradient subgradient methods for solving bilevel equilibrium problems vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1898-1