References
- P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), no. 2, 271-283. https://doi.org/10.1080/02331934.2011.607497
- P. K. Anh, Ng. Buong, and D. V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal. 93 (2014), no. 10, 2136-2157. https://doi.org/10.1080/00036811.2013.872777
-
P. K. Anh and D. V. Hieu, Parallel and sequential hybrid methods for a finite family of asymptotically quasi
${\phi}$ -nonexpansive mappings, J. Appl. Math. Comput. 48 (2015), no. 1-2, 241-263. https://doi.org/10.1007/s12190-014-0801-6 - P. K. Anh and D. V. Hieu, Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems, Vietnam J. Math. (2015), DOI:10.1007/s10013-015-0129-z.
- P. N. Anh, J. K. Kim, and N. D. Hien, A cutting hyperplane method for solving pseudomonotone non-Lipschitzian equilibrium problems, J. Inequal. Appl. (2012), 2012:288, 16 pp. https://doi.org/10.1186/1029-242X-2012-16
- P. N. Anh, J. K. Kim, and L. D. Muu, An extragradient algorithm for solving bilevel pseudomonotone variational inequalities, J. Global Optim. 52 (2012), no. 3, 627-639. https://doi.org/10.1007/s10898-012-9870-y
- M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31-43. https://doi.org/10.1007/BF02192244
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Program. 63 (1994), no. 1-4, 123-145.
- S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
- Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), no. 4-5, 827-845. https://doi.org/10.1080/10556788.2010.551536
- Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318-335. https://doi.org/10.1007/s10957-010-9757-3
- P. Daniele, F. Giannessi, and A. Maugeri, Equilibrium Problems and Variational Models, Kluwer, 2003.
- B. V. Dinh, P. G. Hung, and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35 (2014), no. 5, 539-563. https://doi.org/10.1080/01630563.2013.813857
- F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin, 2002.
- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Math., vol. 28. Cambridge University Press, Cambridge, 1990.
- D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal. (2016); DOI:10.3846/13926292.2016.1183527.
- D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2, 373-388. https://doi.org/10.4134/JKMS.2015.52.2.373
- J. K. Kim and P. N. Anh, Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems, J. Korean. Math. Soc. 49 (2012), no. 1, 187-200. https://doi.org/10.4134/JKMS.2012.49.1.187
- G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody 12 (1976), 747-756.
- G. Mastroeni, On auxiliary principle for equilibrium problems, Publ. Dipart. Math. Univ. Pisa 3 (2000), 1244-1258.
- L. D. Muu and W. Oettli, Convergence of an adative penalty scheme for finding constrained equilibria, Nonlinear Anal. TMA 18 (1992), no. 12, 1159-1166. https://doi.org/10.1016/0362-546X(92)90159-C
- N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230-1241. https://doi.org/10.1137/050624315
- N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), no. 1, 191-201. https://doi.org/10.1007/s10957-005-7564-z
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
- T. D. Quoc, L. D. Muu, and N. V. Hien, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), 749-776. https://doi.org/10.1080/02331930601122876
- N. V. Quy, V. H. Nguyen, and L. D. Muu, On the Cournot-Nash oligopolistic market equilibrium problem with concave cost function, Epreprint. Hanoi Institute of Mathematics, 2 (2005).
- M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, 189-202. https://doi.org/10.1007/s101079900113
- S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560
Cited by
- Extragradient subgradient methods for solving bilevel equilibrium problems vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1898-1