References
- M. Bacak, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), no. 2, 689-701. https://doi.org/10.1007/s11856-012-0091-3
- I. Beg, Inequalities in metric spaces with applications, Topol. Methods Nonlinear Anal. 17 (2001), no. 1, 183-190. https://doi.org/10.12775/TMNA.2001.012
- B. J. Choi, J. Heo, and U. C. Ji, Asymptotic property for inductive means in uniformly convex metric spaces, preprint, 2015.
- J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4
- C. Conde, Geometric interpolation in p-Schatten class, J. Math. Anal. Appl. 340 (2008), no. 2, 920-931. https://doi.org/10.1016/j.jmaa.2007.09.008
- C. Conde, Nonpositive curvature in p-Schatten class, J. Math. Anal. Appl. 356 (2009), no. 2, 664-673. https://doi.org/10.1016/j.jmaa.2009.03.036
- T. Foertsch, Ball versus distance convexity of metric spaces, Beitrage Algebra Geom. 45 (2004), no. 2, 481-500.
- H. Fukharuddin, A. R. Khan, and Z. Akhtar, Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces, Nonlinear Anal. 75 (2012), no. 13, 4747-4760. https://doi.org/10.1016/j.na.2012.03.025
- J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659-673. https://doi.org/10.1007/BF02566027
- J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1997.
- J. Jost, Nonlinear Dirichlet forms, in New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math. 8, pp. 1-7, American Mathematical Society, Providence, RI, 1998.
- J. Jost, Riemannian Geometry and Geometric Analysis, Fifth ed., Universitext, Springer-Verlag, Berlin, 2008.
- M. A. Khamsi and A. R. Khan, Inequalities in metric spaces with applications, Nonlinear Anal. 74 (2011), no. 12, 4036-4045. https://doi.org/10.1016/j.na.2011.03.034
- K. Kuwae, Jensen's inequality on convex spaces, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1359-1378. https://doi.org/10.1007/s00526-013-0625-5
- J.-J. Moreau, Proximite et dualite dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273-299.
- A. Naor and L. Silberman, Poincare inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546-1572. https://doi.org/10.1112/S0010437X11005343
- S. Ohta, Convexities of metric spaces, Geom. Dedicata 125 (2007), 225-250. https://doi.org/10.1007/s10711-007-9159-3
- S. Ohta and M. Palfia, Discrete-time gradient flows and law of large numbers in Alexandrov spaces, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1591-1610. https://doi.org/10.1007/s00526-015-0837-y
- B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), no. 1, 10-21. https://doi.org/10.1016/0022-247X(87)90234-4
- T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 197-203. https://doi.org/10.12775/TMNA.1996.028
- K.-T. Sturm, Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357-390, Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003.
- W. Takahashi, A convexity in metric space and nonexpansive mappings. I, Kodai Math. Sem. Rep. 22 (1970), 142-149. https://doi.org/10.2996/kmj/1138846111
- H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
Cited by
- Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces pp.1572-9265, 2018, https://doi.org/10.1007/s11075-018-0633-9
- Proximal point algorithm involving fixed point of nonexpansive mapping in 𝑝-uniformly convex metric space vol.0, pp.0, 2019, https://doi.org/10.1515/apam-2018-0026