DOI QR코드

DOI QR Code

DIFFERENTIABILITY AND NON-DIFFERENTIABILITY POINTS OF THE MINKOWSKI QUESTION MARK FUNCTION

  • Baek, In-Soo (Department of Mathematics Busan University of Foreign Studies)
  • Received : 2015.12.29
  • Published : 2016.10.31

Abstract

Using the periodic continued fraction, we give concrete examples of the points at which the derivatives of the Minkowski question mark function does not exist. We also give examples of the differentiability points which show that recent apparently independent results are consistent and closely related.

Keywords

Acknowledgement

Supported by : Busan University of Foreign Studies

References

  1. A. Denjoy, Sur une fonction reelle de Minkowski, J. Math. Pures Appl. 17 (1938), 105-151.
  2. R. Girgensohn, Constructing singular functions via Farey fractions, J. Math. Anal. Appl. 203 (1996), no. 1, 127-141. https://doi.org/10.1006/jmaa.1996.0370
  3. M. Kessebohmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. 605 (2007), 133-163.
  4. M. Kessebohmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function, J. Number Theory 128 (2008), no. 9, 2663-2686. https://doi.org/10.1016/j.jnt.2007.12.010
  5. Y.-R. Lee, Some remarks on the periodic continued fraction, Chungcheong Math. J. 22 (2009), no. 2, 155-159.
  6. J. Paradis, P. Viader, and L. Bibiloni, The derivative of Minkowski's ?(x) function, J. Math. Anal. Appl. 253 (2001), no. 1, 107-125. https://doi.org/10.1006/jmaa.2000.7064
  7. R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439. https://doi.org/10.1090/S0002-9947-1943-0007929-6
  8. P. Viader, J. Paradis, and L. Bibiloni, A new light on Minkowski's ?(x) function, J. Number Theory 73 (1998), no. 2, 212-227. https://doi.org/10.1006/jnth.1998.2294