References
- L. Akila and R. Roopkumar, A natural convolution of quaternion valued functions and its applications, Appl. Math. Comput. 242 (2014), 633-642.
- T. Alieva and M. J. Bastiaans, Fractional cosine and sine transform in relation to the fractional Fourier and Hartley transforms, Proceedings of the Seventh International Symposium on Signal Processing and its Applications Paris, France 1 (2003), 561-564.
- C. Arteaga and I. Marrero, The Hankel transform of tempered boehmians via the exchange property, Appl. Math. Comput. 219 (2012), no. 3, 810-818. https://doi.org/10.1016/j.amc.2012.06.043
- P. J. Miana, Convolutions, Fourier trigonometric transforms and applications, Integral Transforms Spec. Funct. 16 (2005), no. 7, 583-585. https://doi.org/10.1080/10652460410001672951
- J. Mikusinski and P. Mikusinski, Quotients de suites et leurs applications dans l'anlyse fonctionnelle, C. R. Acad. Sci. Paris Ser. I Math. 293 (1981), no. 9, 463-464.
- P. Mikusinski, Convergence of boehmians, Japan. J. Math. 9 (1983), no. 1, 159-179. https://doi.org/10.4099/math1924.9.159
- P. Mikusinski, Tempered Boehmians and ultra distributions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 813-817. https://doi.org/10.1090/S0002-9939-1995-1223517-7
- P. Mikusinski, On flexibility of Boehmians, Integral Transforms Spec. Funct. 4 (1996), no. 1-2, 141-146. https://doi.org/10.1080/10652469608819101
- P. Mikusinski, A. Morse, and, D. Nemzer, The two sided Laplace transform for Boehmians, Integral Transforms Spec. Funct. 2 (1994), no. 3, 219-230. https://doi.org/10.1080/10652469408819051
- P. Mikusinski and A. I. Zayed, The Radon transform of Boehmians, Proc. Amer. Math. Soc. 118 (1993), no. 2, 561-570. https://doi.org/10.1090/S0002-9939-1993-1145949-6
- V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl. 25 (1980), no. 3, 241-265. https://doi.org/10.1093/imamat/25.3.241
- D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Austral. Math. Soc. 46 (1992), no. 2, 347-352. https://doi.org/10.1017/S0004972700011965
- D. Nemzer, Integrable Boehmians, Fourier transforms, and Poisson's summation formula, Appl. Anal. Discrete Math. 1 (2007), no. 1, 172-183. https://doi.org/10.2298/AADM0701172N
- D. Nemzer, Extending the Stieltjes transform, Sarajevo J. Math. 10 (2014), no. 2, 197-208. https://doi.org/10.5644/SJM.10.2.06
- D. Nemzer, Extending the Stieltjes transform II, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1060-1074. https://doi.org/10.2478/s13540-014-0214-0
- S. C. Pei and J. J. Ding, Fractional cosine, sine, and Hartley transforms, IEEE Trans. Signal Process. 50 (2002), no. 7, 1661-1680. https://doi.org/10.1109/TSP.2002.1011207
- R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (2006), no. 4, 1375-1390. https://doi.org/10.1216/rmjm/1181069418
- R. Roopkumar, Ridgelet transform on square integrable Boehmians, Bull. Korean Math. Soc. 46 (2009), no. 5, 835-844. https://doi.org/10.4134/BKMS.2009.46.5.835
- R. Roopkumar, Mellin transform for Boehmians, Bull. Inst. Math. Acad. Sinica. 4 (2009), no. 1, 75-96.
- R. Roopkumar and E. R. Negrin, Poisson transform on Boehmians, Appl. Math. Comput. 216 (2010), no. 9, 2740-2748. https://doi.org/10.1016/j.amc.2010.03.122
- R. Roopkumar, E. R. Negrin, and C. Ganesan, Fourier cosine and sine transforms Boehmian spaces, Asian-Eur. J. Math. 6 (2013), no. 1, 1350005, 17 pages.
- W. Rudin, Real and Complex Analysis, McGraw-Hill Inc., New York, 1987.
- I. N. Sneddon, The Use of Integral Transform, McGraw-Hill Inc., New York, 1972.
- N. X. Thao, V. A. Kakichev, and V. K. Tuan, On the generalized convolution for Fourier cosine and sine transforms, East-West J. Math. 1 (1998), no. 1, 85-90.
- N. X. Thao, V. K. Tuan, and N. T. Hong, Integral transforms of Fourier cosine and sine generalized convolution type, Internat. J. Math. Math. Sci. 2007 (2007), 97250, 11 pages.
- N. X. Thao, V. K. Tuan, and N. M. Khoa, On the generalized convolution with a weight function for the Fourier cosine and sine transforms, Fract. Calc. Appl. Anal. 7 (2004), no. 3, 323-337.
- V. K. Tuan, Integral transforms of Fourier cosine convolution type, J. Math. Anal. Appl. 229 (1999), no. 2, 519-529. https://doi.org/10.1006/jmaa.1998.6177
- A. I. Zayed, Fractional fourier transform of generalized functions, Integral Transforms Spec. Funct. 7 (1998), no. 3-4, 299-312. https://doi.org/10.1080/10652469808819206
- A. I. Zayed and P. Mikusinski, On the extension of the Zak transform, Methods Appl. Anal. 2 (1995), no. 2, 160-172.