DOI QR코드

DOI QR Code

CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER COSINE AND SINE TRANSFORMS AND THEIR EXTENSIONS TO BOEHMIANS

  • Received : 2015.12.18
  • Published : 2016.10.31

Abstract

By introducing two fractional convolutions, we obtain the convolution theorems for fractional Fourier cosine and sine transforms. Applying these convolutions, we construct two Boehmian spaces and then we extend the fractional Fourier cosine and sine transforms from these Boehmian spaces into another Boehmian space with desired properties.

Keywords

References

  1. L. Akila and R. Roopkumar, A natural convolution of quaternion valued functions and its applications, Appl. Math. Comput. 242 (2014), 633-642.
  2. T. Alieva and M. J. Bastiaans, Fractional cosine and sine transform in relation to the fractional Fourier and Hartley transforms, Proceedings of the Seventh International Symposium on Signal Processing and its Applications Paris, France 1 (2003), 561-564.
  3. C. Arteaga and I. Marrero, The Hankel transform of tempered boehmians via the exchange property, Appl. Math. Comput. 219 (2012), no. 3, 810-818. https://doi.org/10.1016/j.amc.2012.06.043
  4. P. J. Miana, Convolutions, Fourier trigonometric transforms and applications, Integral Transforms Spec. Funct. 16 (2005), no. 7, 583-585. https://doi.org/10.1080/10652460410001672951
  5. J. Mikusinski and P. Mikusinski, Quotients de suites et leurs applications dans l'anlyse fonctionnelle, C. R. Acad. Sci. Paris Ser. I Math. 293 (1981), no. 9, 463-464.
  6. P. Mikusinski, Convergence of boehmians, Japan. J. Math. 9 (1983), no. 1, 159-179. https://doi.org/10.4099/math1924.9.159
  7. P. Mikusinski, Tempered Boehmians and ultra distributions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 813-817. https://doi.org/10.1090/S0002-9939-1995-1223517-7
  8. P. Mikusinski, On flexibility of Boehmians, Integral Transforms Spec. Funct. 4 (1996), no. 1-2, 141-146. https://doi.org/10.1080/10652469608819101
  9. P. Mikusinski, A. Morse, and, D. Nemzer, The two sided Laplace transform for Boehmians, Integral Transforms Spec. Funct. 2 (1994), no. 3, 219-230. https://doi.org/10.1080/10652469408819051
  10. P. Mikusinski and A. I. Zayed, The Radon transform of Boehmians, Proc. Amer. Math. Soc. 118 (1993), no. 2, 561-570. https://doi.org/10.1090/S0002-9939-1993-1145949-6
  11. V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl. 25 (1980), no. 3, 241-265. https://doi.org/10.1093/imamat/25.3.241
  12. D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Austral. Math. Soc. 46 (1992), no. 2, 347-352. https://doi.org/10.1017/S0004972700011965
  13. D. Nemzer, Integrable Boehmians, Fourier transforms, and Poisson's summation formula, Appl. Anal. Discrete Math. 1 (2007), no. 1, 172-183. https://doi.org/10.2298/AADM0701172N
  14. D. Nemzer, Extending the Stieltjes transform, Sarajevo J. Math. 10 (2014), no. 2, 197-208. https://doi.org/10.5644/SJM.10.2.06
  15. D. Nemzer, Extending the Stieltjes transform II, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1060-1074. https://doi.org/10.2478/s13540-014-0214-0
  16. S. C. Pei and J. J. Ding, Fractional cosine, sine, and Hartley transforms, IEEE Trans. Signal Process. 50 (2002), no. 7, 1661-1680. https://doi.org/10.1109/TSP.2002.1011207
  17. R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (2006), no. 4, 1375-1390. https://doi.org/10.1216/rmjm/1181069418
  18. R. Roopkumar, Ridgelet transform on square integrable Boehmians, Bull. Korean Math. Soc. 46 (2009), no. 5, 835-844. https://doi.org/10.4134/BKMS.2009.46.5.835
  19. R. Roopkumar, Mellin transform for Boehmians, Bull. Inst. Math. Acad. Sinica. 4 (2009), no. 1, 75-96.
  20. R. Roopkumar and E. R. Negrin, Poisson transform on Boehmians, Appl. Math. Comput. 216 (2010), no. 9, 2740-2748. https://doi.org/10.1016/j.amc.2010.03.122
  21. R. Roopkumar, E. R. Negrin, and C. Ganesan, Fourier cosine and sine transforms Boehmian spaces, Asian-Eur. J. Math. 6 (2013), no. 1, 1350005, 17 pages.
  22. W. Rudin, Real and Complex Analysis, McGraw-Hill Inc., New York, 1987.
  23. I. N. Sneddon, The Use of Integral Transform, McGraw-Hill Inc., New York, 1972.
  24. N. X. Thao, V. A. Kakichev, and V. K. Tuan, On the generalized convolution for Fourier cosine and sine transforms, East-West J. Math. 1 (1998), no. 1, 85-90.
  25. N. X. Thao, V. K. Tuan, and N. T. Hong, Integral transforms of Fourier cosine and sine generalized convolution type, Internat. J. Math. Math. Sci. 2007 (2007), 97250, 11 pages.
  26. N. X. Thao, V. K. Tuan, and N. M. Khoa, On the generalized convolution with a weight function for the Fourier cosine and sine transforms, Fract. Calc. Appl. Anal. 7 (2004), no. 3, 323-337.
  27. V. K. Tuan, Integral transforms of Fourier cosine convolution type, J. Math. Anal. Appl. 229 (1999), no. 2, 519-529. https://doi.org/10.1006/jmaa.1998.6177
  28. A. I. Zayed, Fractional fourier transform of generalized functions, Integral Transforms Spec. Funct. 7 (1998), no. 3-4, 299-312. https://doi.org/10.1080/10652469808819206
  29. A. I. Zayed and P. Mikusinski, On the extension of the Zak transform, Methods Appl. Anal. 2 (1995), no. 2, 160-172.