References
- J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Ann. Math. 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212
- S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
- L. Bieberbach, Uber die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, S. B. Preuss. Akad. Wiss. 1: Sitzungsb. Berlin 38 (1916), 940-955.
- L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152. https://doi.org/10.1007/BF02392821
- J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399-409. https://doi.org/10.1016/j.amc.2004.12.004
- C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298 (2004), no. 1, 210-224. https://doi.org/10.1016/j.jmaa.2004.05.040
- M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 803-815. https://doi.org/10.1080/10652460600926907
- Y. C. Kim and H. M. Srivastava, Some subordination properties for spirallike functions, Appl. Math. Comput. 203 (2008), no. 2, 838-842. https://doi.org/10.1016/j.amc.2008.05.093
-
R. J. Libera, Univalent
${\alpha}$ -spiral functions, Canad. J. Math. 19 (1967), 449-456. https://doi.org/10.4153/CJM-1967-038-0 - S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), no. 3, 725-733. https://doi.org/10.1016/S0096-3003(03)00746-X
- S.-D. Lin, H. M. Srivastava, and P. Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 817-827. https://doi.org/10.1080/10652460600926923
- G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct. 23 (2012), no. 2, 97-103. https://doi.org/10.1080/10652469.2011.562501
- M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 153-159.
- J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the class of strongly starlike and convex functions, J. Math. Inequal. 3 (2009), no. 1, 129-137.
- D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 933-943. https://doi.org/10.1080/10652460701542074
- L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. 62 (1932), 12-19.
- H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3-4, 207-216. https://doi.org/10.1080/10652460701208577
- H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
- H. M. Srivastava and S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17-24.
- Q.-H. Xu, C.-B. Lv, N.-C. Luo, and H. M. Srivastava, Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat. 27 (2013), no. 7, 1351-1356. https://doi.org/10.2298/FIL1307351X
- Q.-H. Xu, C.-B. Lv, and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219 (2013), no. 12, 7000-7011. https://doi.org/10.1016/j.amc.2012.12.055