DOI QR코드

DOI QR Code

Prediction on the Effect of Multi-Constellation SBAS by the Application of SDCM in Korea and Its Performance Evaluation

SDCM의 국내 적용 및 성능 평가를 통한 다중 위성군 SBAS의 효과 예측

  • 임철순 (세종대학교 항공우주공학과) ;
  • 석효정 (세종대학교 항공우주공학과) ;
  • 황호연 (세종대학교 항공우주공학과) ;
  • 박병운 (세종대학교 항공우주공학과)
  • Received : 2016.09.28
  • Accepted : 2016.10.20
  • Published : 2016.10.30

Abstract

Russia recently began broadcasting the SDCM signal in order to provide SBAS service for the civil aviation in the Russian territory using its own geostationary satellites. The service coverage of the SDCM geostationary satellite, LUCH-5A and LUCH-5B, includes Korea peninsula, where the test signal from the pseudo random number (PRN) 140 is received. This paper shows that the position accuracy at the Chulwon GNSS site is improved to 0.8749 m (horizontal) and 0.9589 mm (vertical) by applying the received SDCM message to the RINEX data. Considering that the SDCM augments both GPS and GLONASS, the performance of multi-constellation SBAS was compared to that of GPS-only SBAS, and APV-I availability was improved by decreasing the protection level about 30 %. From the results, we can expect that the mult-constellation SBAS can contribute to the performance enhancement of the future KASS.

러시아는 자국 내 위성기반 보강시스템의 서비스 제공을 위하여 최근 정지궤도 위성을 통하여 SDCM 신호를 송출하기 시작하였다. SDCM용 정지궤도 위성인 LUCH-5A와 LUCH-5B의 영향권에 포함되어 있는 한반도에서도 현재 테스트 중인 PRN (pseudo random number) 140번 메시지가 수신되고 있어 국내 SDCM의 적용 및 그 성능 분석이 가능하다. 본 논문에서는 수신된 SDCM 메시지를 남한 지역의 최북단에 위치한 국토지리정보원 철원 기준국에 적용하였고, 이를 통해 수평 0.8749 m, 수직 0.9589 m (RMS)으로 그 성능이 크게 향상됨을 확인하였다. 또한 GPS와 GLONASS를 동시에 보강하는 SDCM의 특성을 반영하여 분석한 결과, 다중 위성군의 SBAS가 GPS 단독 SBAS에 비해 보호수준은 약 30 % 감소시킴으로써, APV-I 가용성 증대에 기여함을 확인하였다. 이를 통해 다중 위성군의 SBAS가 국내 개발될 KASS 시스템의 성능 향상에 기여할 수 있음을 예측할 수 있다.

Keywords

References

  1. J. H. Han, et al, A basic study for development of safety technologies in aviation - focusing on development of airspace safety assessment model, The Korea Transport Institute, Gyeonggi-do, Research Series, 2011-14, 2011
  2. KASS [Internet]. Available: http://kass-eng.re.kr/
  3. Sakai, Takeyasu, Yamada, Hideki, Hoshinoo, and Kazuaki, "GPS/GLONASS multi-constellation SBAS trial and preliminary results for East-Asia region", in Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville: TN, pp. 854-866,September 2012.
  4. D. Lawrence, "Global SBAS status", in Proceedings of ION 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 1574-1602, Portland: OR, Sept. 2011.
  5. Russian system of differentional correction and monitoring [Internet]. Available: http://www.sdcm.ru/
  6. Y. Yun, Interoperability between multiple SBAS systems in the overlaid region, SBAS Trend Report, 2016
  7. SBAS South Africa [Internet]. Available: http://sbas-africa.avantiplc.com/
  8. J. Burns, Wide area augmentation system (WAAS) - program status update, RTCA Working Group 2, 2013
  9. C. S. Sin, et al, Technical development trends of satellite based augmentation system, 2014 Electronics and Telecommunications Trends, pp. 74-85 2014.
  10. P. D. Smet, "The European GNSS programmes EGNOS and Galileo", in Proceeding of the 6th ICG Conference, Tokyo: Japan, 2011.
  11. EGNOS Africa JPO : Support to EGNOS in Africa, in Proceeding of the ACAC GNSS Workshop, Rabat: Morocco, 2016
  12. G. Nam, et al, Final report on the foundation plan for the implementation of SBAS, KAIA, 2014
  13. A.S. Ganeshan, et al, GAGAN-India's SBAS, Technical article, InsideGNSS, 2016
  14. Russian Space Systems, Radio signals and digital data structure of GLONASS wide area augmentation system, system of differential correction and monitoring, Interface Control Document, Edition 1, 2012.
  15. KARI [Internet]. Available: http://www.kari.re.kr/kor/sub03_06.do
  16. KONI, Report on establishment of the management and operation system of the GNSS augmentation system for the aviation, MOLIT, 2013.
  17. FAA-navigation programs [Internet]. Available: http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/news/
  18. ESA Navipeida [Internet]. Available: http://www.navipedia.net/index.php/EGNOS_Signal_Structure
  19. RTCA, Inc. document, DO-229(D), Minimum operational performance standards for global positioning system/ wide area augmentation system airborne equipment.
  20. H. Seok, Study on the accuracy improvement and integrity information generation of the low-cost GPS receiver for the expansion of drone operation, M. S. Thesis, Sejong University, Seoul, Korea, 2016.
  21. H. Yun, et al, Availablity performance analysis of Korea wide area differential GNSS test bed, Journal of Advanced Navigation Technology, Vol. 15, No. 4, pp. 510-516, 2011.
  22. T.Walter, J. Blanch, and P. Enge, "L1/L5 SBAS MOPS to support multiple constellations", in Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation , Nashville: TN, pp. 1287-1297 Sept. 2012.

Cited by

  1. Improvement of UAV Positioning Performance Based on EGNOS+SDCM Solution vol.13, pp.13, 2016, https://doi.org/10.3390/rs13132597
  2. Designation of the Quality of EGNOS+SDCM Satellite Positioning in the Approach to Landing Procedure vol.12, pp.3, 2016, https://doi.org/10.3390/app12031335