DOI QR코드

DOI QR Code

Evaluation of Combustion gas during Fire Tests of Veneers Coated with Ammonium Salts

암모늄염으로 도포시킨 베니어판의 연소 시에 발생하는 연소가스 평가

  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2016.08.17
  • Accepted : 2016.09.09
  • Published : 2016.10.31

Abstract

This study tested the combustion characteristics of veneer specimens coated with four kinds of ammonium salts. Each veneer specimen was coated three times with 20 wt.% ammonium salt solutions at room temperature. After drying, the combustion characteristics of the specimens coated with chemicals, were investigated using the cone calorimeter (ISO 5660-1, 2). The specimens coated with monoammonium phosphate (MAPP) and, diammonium phosphate (DMPP) showed a 6.7% and, 10.0%, lower mean heat release rate ($HRR_{mean}$), respectively, than that of the uncoated specimen. On the other hand, the specimens coated with MAPP showed a 15.7% higher $CO_{peak}$ production rate and the specimens coated with DAPP showed by 8.2% lower rate than that of the uncoated specimen. The veneer coated with ammonium sulfate (AMSF) and DAPP showed a 9.6% and 33.3% lower the peak smoke production rate ($SPR_{peak}$) than that of the uncoated specimen. In addition, the time to the peak smoke extinction area ($SEA_{peak}$) was delayed by 38.4% in the specimens coated with DAPP than the uncoated specimen. Therefore, DAPP inhibited the combustion properties of the veneer and showed a tendency to reduce smoke production.

이 연구에서는 4종의 암모늄염으로 도포된 베니어 시험편의 연소 특성을 시험하였다. 20 wt%의 암모늄염 수용액으로 각각 베니어 시험편에 3회 붓으로 도포하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1, 2)를 사용하여 연소특성을 조사하였다. 그 결과, 모노암모늄 포스페이트(MAPP)와 디암모늄 포스페이트(DAPP)로 처리한 시험편은 순수한 베니어 시험편에 비해 평균열방출율($HRR_{mean}$)이 각각 6.7%, 10.0% 낮았다. 반면에 MAPP는 최대 일산화탄소발생속도($CO_{peak}$ production rate)가 순수한 베니어 시험편에 비해 15.7% 높았고 DAPP는 8.2% 낮았다. 황산암모늄(AMSF)으로 도포된 베니어 시험편의 최대 연기발생속도($SPR_{peak}$)는 순수한 베니어 시험편에 비해 9.6% 낮았고 DAPP로 처리된 시험편은 33.3% 낮았다. 또한 DAPP는 최대 연기비감쇠면적($SEA_{peak}$)에 다다르는 시간이 순수한 베니어 시험편에 비해 38.4% 지연되었다. 그러므로 DAPP는 베니어의 연소성질을 억제시키고 연기발생을 감소시키는 경향이 나타났다.

Keywords

References

  1. M. S. Mahr, T. Hubert, M. Sabel, B. Schartel, H. Bahr and H. Militz, "Fire Retardancy of Sol-gel Derived Titania Wood-inorganic Composites", Journal of Materials Science, Vol. 47, No. 19, pp. 6849-6861 (2012). https://doi.org/10.1007/s10853-012-6628-3
  2. S. L. LeVan and J. E. Winandy, "Effect of Fire Retardant Treatments on Wood Strenth: A Review", Wood and Fiber Science, Vol. 22, No. 1, pp. 113-131 (1990).
  3. I. S. Goldstein and W. A. Dreher, "Non-Hygroscopic Fire Retardant Treatment for Wood", Froe. Prod. J., Vol. 11, No. 5, pp. 235-237 (1961).
  4. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Institute of Natural Fibres, Pozman, Poland (1995).
  5. Y. J. Chung, "Comparison of Combustion Properties of Native Wood Species Used for Fire Pots in Korea", Journal of Industrial and Engineering Chemistry, Vol. 16, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  6. J. G. Quintiere, "A Semi-quantitative Model for the Burning Rate of Solid Materials", NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, M.D., U.S.A. (1992).
  7. M. J. Spearpoint and G. J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol. 123, pp. 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  8. J. J. Brenden, "How Wine Inorganic Salts Affected Smoke Yield From Douglas-five Plywood", P . B., U.S. Forest Service, Reseach Paper FPL-249, p. 13 (1975).
  9. H. Bala, Y. Guo, X. Zhao, J. Zhao, W. Fu, X. Ding, Y. Jiang, K. Yu, X. Lv and Z. Wang, "Controlling the Particle Size of Nanocrystalline Titania Via a Thermal Dissociation of Substraes with Ammonium Chloride", Materials Letters, Vol. 60, pp. 494-498 (2006). https://doi.org/10.1016/j.matlet.2005.09.030
  10. S. Mohamed, E. M. Merwe, W. Altermann and F. J. Doucet, "Process Development for Elemental Recovery from PGM Tailings by Thermochemical Treatment: Preliminary Major Element Extraction Studies Using Ammonium Sulfate as Extracting Agent", Waste Management, Vol. 50, pp. 334-345 (2016). https://doi.org/10.1016/j.wasman.2016.02.021
  11. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  12. S. Liodakis, D. Vorisis and I. P. Agiovlasitis, "Testing the Retardancy Effect of Various inorganic Chemicals on Smoldering Combustion of Pinus Halepensisneedles", Thermochim. Acta, Vol. 444, pp. 157-165 (2006). DOI:10.1016/j.tca.2006.03.010.
  13. F. Samyn, S. Bourbigot, S. Duquesne and R. Delobel, "Effect of Zinc Borate on the Thermal Degradation of Ammonium Polyphosphate", Thermochim. Acta, Vol. 456, pp. 134-144 (2007). DOI:10.1016/j.tca.2007.02.006.
  14. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
  15. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, ACS Symposium Series 797 (2001).
  16. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, No. 3, pp. 251-255 (2007).
  17. W. T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. pp. 1-21 (1987).
  18. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, "Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Geneva (2002).
  19. ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 2: Smoke Production Rate Heat (Dynamic Measurement), Geneva (2002).
  20. R. S. Berns, "Billmeyer and Saltszman's Principles of Color Technology", Wiley Intersciences, New York, U.S.A. (2000).
  21. V. Babrauskas, "Heat Release Rate, Section 3", The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massachusetts, U.S.A. (2008).
  22. M. M. Hirscher, "Reduction of Smoke Formation from and Flammability of Thermoplastic polymers by Metal Oxides", Polymer, Vol. 25, pp. 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  23. J. Zhang, D. D. Jiang and C. A. Wilkie, "Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay", Polm. Degrad. Stab., Vol. 91, pp. 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  24. Y. J. Chung, H. M. Lim, E. Jin and J. K. Oh, "Combustion-retardation Properties of Low Density Polyethylene and Etylene Vinyl Acetate Mixtures with Magnesium Hydroxide", Appl. Chem. Eng., Vol. 22, No. 4, pp. 439- 443 (2011).
  25. OHSA, "Carbon Monoxide", OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14 (2009).
  26. OHSA, "Carbon Dioxide", Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA's Comments, Jannuary 19 (1989).
  27. MSHA, "Carbon Monoxide", MSHA's Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor (2015).
  28. S. Ishihara, "Smoke and Toxic Gases Produced During Fire", Wood Research and Technical Notes, Vol. 16, No. 5, pp. 49-62 (1981).