
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.5.331 331

IEIE Transactions on Smart Processing and Computing

Multi-Stride Decision Trie for IP Address Lookup

Jungwon Lee and Hyesook Lim*

Department of Electronic and Electrical Engineering, Ewha Womans University / Seoul, Korea
jungwon0736@gmail.com, hlim@ewha.ac.kr

* Corresponding Author: Hyesook Lim

Received September 23, 2016; Revised October 17, 2016; Accepted October 18, 2016; Published October 30, 2016

* Regular Paper

Abstract: Multi-bit tries have been proposed to improve the search performance of a binary trie by
providing flexibility in stride values, which identify the number of bits examined at a time.
However, constructing a variable-stride multi-bit trie is challenging since it is not easy to determine
a proper stride value that satisfies the required performance at each node. The aim of this paper is to
identify several desired characteristics of a trie for IP address lookup problems, and to propose a
multi-stride decision trie that has these characteristics. Simulation results using actual routing sets
with about 30,000 to 220,000 prefixes show that the proposed multi-stride decision trie has the
desired characteristics and achieves IP address lookup using 33% to 47% of the 2-bit trie in the
average number of node accesses, while requiring a smaller amount of memory.

Keywords: IP address lookup; Binary trie; Multi-stride trie

1. Introduction

The IP address lookup is a basic operation for packet
forwarding by Internet routers, and it should be performed
at wire speed for packets arriving at several tens of
millions per second. Hence, search performance becomes a
critical issue in designing IP address lookup algorithms. As
a well-known basic IP address lookup structure [1], a
binary trie is simple and intuitive. However, binary tries
have low flexibility, in which the shape of a trie is
uniquely determined when a prefix set is given. Neither the
depth of the trie nor the number of prefixes compared with
each input address is controlled. Moreover, binary tries do
not provide high-speed search performance, because each
input is examined one bit at a time. Shorter-length prefixes
are compared with inputs earlier than longer-length
prefixes in a binary trie, while the IP address lookup
should return the longest matching prefix; therefore, the
search should always continue until there is no edge to
follow, even though a matching prefix is encountered. To
overcome these issues of the binary trie, hash table–based
algorithms using a Bloom filter were recently proposed [2-
5].

Many variant structures of the binary trie have been
proposed [1]. A leaf-pushing trie has prefix nodes only in
leaves by pushing down all the internal node prefixes into
leaves [6]. The advantage of a leaf-pushing trie is that each

input is compared with a single prefix. However, it also
does not provide flexibility in the shape of the trie. A
multi-bit trie solves the search performance issue of the
binary trie by allowing multiple bits to be examined
simultaneously [7, 8]. However, since there is no known
rule for determining stride values, it is not easy to
construct efficient multi-bit tries with variable strides.

Several desired characteristics of a trie can be
identified as follows. First is controllability. If
controllability in the shape of a trie, such as trie depth or
stride value, is provided, the memory requirement for
routing tables, or the average and the worst-case search
performances, can be controlled. Second is separability, in
which internal nodes are separated from leaf nodes. If
separability is satisfied, search performance can be
improved by compressing internal nodes and/or by storing
internal nodes in on-chip memory for fast processing,
while storing prefix nodes in off-chip memory [9, 10].
Third is longest-first comparison, in which longer-length
prefixes are compared earlier than shorter-length prefixes.
If longest-first comparison is provided, the search can be
finished as soon as a matching prefix is found [11, 12].

This paper proposes a method of constructing an
efficient multi-stride decision trie that satisfies the desired
characteristics. The remainder of the paper is organized as
follows. In Section 2, related works are described. Section
3 describes the proposed trie. Section 4 evaluates the

Lee et al.: Multi-Stride Decision Trie for IP Address Lookup

332

performance of the proposed algorithm, and Section 5
concludes the paper.

2. Related Works

2.1 Binary Trie
A binary trie has a bit-wise data structure, representing

one bit of each prefix using an edge of the trie. A prefix is
stored in a node of the trie, where the level and the path of
the node relative to the root node correspond to the length
and the value of the prefix, respectively. Fig. 1 shows an
example binary trie for an arbitrary set of prefixes. For the
given set of prefixes, the shape of the trie is uniquely
determined, which means that controllability in terms of
trie depth or stride value is not provided. Prefixes can be
stored in internal nodes, and hence, the binary trie does not
satisfy separability. The search procedure starts from the
root node, and the longer-length prefixes are compared
later than shorter-length prefixes.

2.2 Multi-bit Trie
Multi-bit tries improve the search performance of a

binary trie by providing flexibility in stride values [7]. Fig.
2 shows a 2-bit trie constructed for the example set. Each
node can have a maximum of four children. Since two bits
are examined simultaneously, some prefixes (such as one-
bit prefix P2) should be replicated into multiple nodes. The
search procedure in a multi-bit trie is the same as that of a

binary trie, except that multiple bits are examined at the
same time. Once a stride value is determined, the shape of
a multi-bit trie is also uniquely determined. Hence, multi-
bit tries do not provide controllability in terms of trie depth
or the amount of prefix replication. It is possible to
construct a multi-bit trie having different stride values at
each node, but no guideline is provided to determine the
proper stride value. Similar to binary tries, multi-bit tries
do not provide separability, and longer-length prefixes are
compared after shorter-length prefixes.

2.3 Leaf-pushing Trie
Leaf-pushing tries push down every internal node

prefix into leaves so that prefixes are stored only at leaves
[6]. Fig. 3 shows the leaf-pushing trie corresponding to the
binary trie shown in Fig. 1. An internal node prefix can be
replicated into multiple leaf nodes. The leaf-pushing trie
provides separability and longest-first comparison.
However, once a prefix set is given, the shape of the leaf-
pushing trie is uniquely determined, and hence, it does not
provide controllability.

3. Proposed Algorithm

We propose to utilize the principle of constructing a
decision tree in a hierarchical intelligent cutting algorithm
(HiCuts) [13] in order to construct a multi-bit decision trie
with variable strides. As a decision tree–based packet
classification algorithm, the HiCuts algorithm approaches
the packet classification problem by partitioning a
geometric search space and tuning a few parameters in a
trade-off between search speed and storage requirements.
In order to provide the controllability of a decision trie, we
use parameters like binth and space factor, similar to
HiCuts.

The IP address lookup problem can be represented
using a range decomposition problem [14]. Fig. 4 shows
the range [000000, 111111] covered by each prefix,
assuming for simplicity that an IP address is six bits. The
entire range corresponds to the root node of the binary trie,

Fig. 1. A binary trie.

Fig. 2. A 2-bit trie.

Fig. 3. A leaf-pushing trie.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

333

while prefix P0, which is 00*, covers the first quarter of the
entire range, and so on. The construction procedure of a
decision trie involves recursively splitting the range into
smaller ranges so that the number of prefixes included in
each range becomes less than or equal to a pre-specified
number.

As a pre-specified number, binth determines the
maximum number of prefixes compared with each input. If
the number of prefixes included in a range is not more than
binth, the range becomes a leaf node of a decision trie, and
the prefixes included in the range are stored in the node. A
smaller binth makes the trie deeper. The amount of prefix
replication caused in splitting a range into smaller ranges is
determined by the space factor. A larger space factor
allows more prefix replication, and hence, a larger stride
value. Starting from stride 1, the stride value can be
increased, provided the total number of prefixes is smaller
than an allowable number of prefixes, which is the original
number of prefixes times the space factor. For the given
example set, the proposed decision trie is shown in Fig. 5.
Here, binth and space factor are 2 and 1.5, respectively. At
the root node, the number of prefixes is 7, and hence, the
allowable number of prefixes is 10.5. If the entire range in
Fig. 5 is split into four ranges, the total number of prefixes
is 8. If it is split into eight, the total number is 11, which is
larger than 10.5. Hence, it was determined to split it into
four ranges, and this corresponds to a stride value of 2.
This process is recursively repeated. In storing prefixes in
a leaf node, if a specific prefix covers the entire range
corresponding to the node, prefixes shorter than the prefix

do not need to be stored, since the IP address lookup
problem involves determining the longest prefix matching
each input. For example, in the last one-eighth range
shown in Fig. 4, prefix P2 is included, but it is not stored in
node 111* in Fig. 5, since a longer prefix (P5) covers the
entire range. Prefixes are stored in decreasing order of
prefix length, so that longer-length prefixes can be
compared earlier than shorter-length prefixes. For example,
prefix P6 is stored first, since it is longer than prefix P5.

The search procedure of the proposed structure is
shown in the pseudo-code in Fig. 6. For each given input,
starting from the most significant bit, the number of bits
specified by the stride value is examined and follows the
corresponding edge until a leaf node is encountered. At a
leaf node, the input is compared with the stored prefix until
a match is found.

For an example of an input with 110101, the search
procedure is as follows. At the root node, the first two bits
of the input are 11, and hence, the search follows the last
edge. At the internal node of level 1, the next bit is 0, and
hence, the search follows the first edge. At the internal
node of level 2, the search follows the last edge, since the
next bit is 1. At a leaf node, prefix P3 is compared with the
input. Since it matches, prefix P3 is returned without
comparing prefix P4.

The proposed decision trie, which is a multi-bit trie

Fig. 4. Ranges Covered by Each Prefix.

Fig. 5. Proposed decision trie.

int searchDecisionTrie(inAddr) {
BMP = defaultPrefix;
W = 32 //initial values
nextNode = root;
for (i = W - 1 to 0) {
node = nextNode;
if (node.type == Leaf) {
BMP = linearSearch(inAddr);
return BMP;
}
else { //node is internal
strideVal = node.strideVal;
nextNode
= getChildPtr (inAddr[i : i-strideVal+1]);
}
i = i-strideVal+1;
}
return -1;
}

Fig. 6. Search procedure of the decision trie.

Lee et al.: Multi-Stride Decision Trie for IP Address Lookup

334

with variable strides, satisfies the desired characteristics. It
provides controllability in terms of stride values, the
amount of prefix replication, and the number of prefix
comparisons. Since prefixes are stored only in leaf nodes,
separability is also satisfied. Longer-length prefixes are
compared earlier than shorter-length prefixes in a leaf node,
and hence, the search can immediately finish as soon as a
matching prefix is identified.

If we set both binth and space factor to 1, the proposed
decision trie will be the same as the leaf-pushing trie,
except that unnecessary empty nodes are not created, since
the length of a prefix does not need to correspond to the
level of the node storing the prefix in the proposed
decision trie. For example, while prefix P1 is stored in level
3 of the leaf-pushing trie, it is stored as a direct child of the
root node, which is the 01* node, in our proposed decision
trie. To the best of our knowledge, the proposed multi-
stride decision trie is the first algorithm that provides
controllability, separability, and longest-first comparison
properties in multi-bit tries.

4. Performance Evaluation

Simulation is performed using the C language for five
different prefix sets downloaded from actual routers. Each
set had prefixes from about 15,000 to 227,000. We
constructed the proposed trie for a fixed binth as 3, and
variable space factors as 1, 1.5, and 3. Table 1 shows the
characteristics of each case, where N is the number of
prefixes, f is the prefix replication factor, Dt is the depth, Ni
is the number of internal nodes, and Nl is the number of
leaf nodes. The prefix replication factor is calculated by
the total number of stored prefixes divided by N. As the
space factor is increased, the trie depth is decreased, and
the number of leaf nodes is increased. The number of input
traces injected to evaluate the search performance is three

times the number of prefixes. The worst-case number of
internal node accesses is equal to Dt -1 considering a leaf
node in each trie. Fig. 7 shows the average number of
internal node accesses. Comparing space factors 1 and 1.5,
the average number of internal node accesses is decreased
considerably by allowing further prefix replication. The
number of prefix comparisons depends on binth. The worst
number of prefix comparisons is the same as binth, and the
average number of prefix comparisons does not
significantly change for the various values of space factor.

We constructed a binary trie, a 2-bit trie, and a leaf-
pushing trie for the same set of prefixes in a performance
comparison with our proposed trie. Table 2 shows the
characteristics of each trie, where Nt is the total number of
nodes, including internal and leaf nodes. The prefix
replication factor f of the binary trie is always 1. The
proposed decision trie has a better replication factor than
the leaf-pushing trie or the 2-bit trie, in most cases. It is
shown that the proposed decision trie has a much smaller
number of total nodes, and hence, a much smaller memory

Table 1. Characteristics of the multi-stride decision trie for various space factors.

Proposed multi-stride trie
Space factor = 1 Space factor = 1.5 Space factor = 2 Prefix set N

f Df Ni Nl f Df Ni Nl f Df Ni Nl
MAE-WEST 14553 1.06 29 8727 7272 1.09 11 2553 10783 1.13 11 2352 11538
MAE-EAST 39464 1.12 24 22797 20352 1.21 10 6616 32823 1.33 10 5558 38865

PORT80 112310 1.04 31 57999 56893 1.14 15 28279 73969 1.29 10 17304 101142
Grouptlcom 170601 1.02 25 25187 83346 1.11 13 40583 107160 1.24 10 84029 148686

Telstra 227223 1.15 32 118517 117834 1.25 16 54586 149984 1.35 10 33163 211357

Table 2. Characteristics from a comparison of various tries with the multi-stride decision trie (binth=3, space
factor=1.5).

Binary trie 2-bit trie Leaf-pushing Proposed Prefix set N
f Dt Nt f Dt Nt f Dt Nt f Dt Nt

MAE-WEST 14553 1 32 76989 1.16 15 45826 1.37 32 82669 1.09 11 13336
MAE-EAST 39464 1 30 172678 1.16 15 106460 1.50 30 193739 1.21 10 39439

PORT80 112310 1 32 225217 1.43 15 181028 1.29 32 300066 1.14 15 102248
Grouptlcom 170601 1 28 315161 1.44 13 262012 1.19 28 411295 1.11 13 147743

Telstra 227223 1 32 452905 1.37 15 360737 1.26 32 576543 1.25 16 204570

Fig. 7. Average number of internal node accesses for
different space factors (spfac).

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

335

requirement than other tries. Figs. 8 and 9 compare the
number of memory accesses in the worst-case and for the
average, respectively, including internal node accesses and
leaf node accesses. It is shown that the proposed multi-
stride trie can achieve IP address lookup using 33% to
47% of the 2-bit trie in an average number of node
accesses.

Figs. 10 and 11 compare the number of prefix
comparisons in the worst-case and average-case,
respectively, assuming that internal nodes are stored in on-
chip memory, and prefix nodes are stored in off-chip
memory. As the number of prefixes is increased, the
number of prefix comparisons is increased rapidly in the
binary trie and in the 2-bit trie, while the number is

controlled in our proposed trie. We see that the proposed
trie can achieve IP address lookup using 25% of the two-
bit trie for the average number of prefix comparisons of
large routing sets, such as PORT80, Grouptlcom, and
Telstra.

5. Conclusion

This paper proposed a new approach of constructing an
efficient multi-stride decision trie for the IP address lookup
problem. Our proposed decision trie has the desired
characteristics of controllability, separability and longest-
first comparison. Compared with a 2-bit trie, the proposed
trie shows better performance in both the number of node
accesses and the number of prefix comparisons, while
requiring a smaller amount of memory.

Acknowledgement

This research was supported by the National Research
Foundation of Korea (NRF), NRF2014R1A2A1A1
1051762 and NRF2015R1A2A1A15054081. This research
was also supported by the Ministry of Science, ICT and
Future Planning (MSIP), Korea, under the Information
Technology Research Center (ITRC) support program
(IITP-2015-H8501-15-1007) supervised by the Institute for
Information & communications Technology Promotion
(IITP).

References

[1] H. Lim and N. Lee, “Survey and Proposal on Binary

Search Algorithms for Longest Prefix Match,” IEEE
Communications Surveys and Tutorials, vol. 14, no. 3,
pp.681-697, July 2012. Article (CrossRef Link)

[2] J. Mun, and H. Lim, “New Approach for Efficient IP
Address Lookup Using a Bloom Filter in Trie-Based
Algorithms,” ” IEEE Trans. on Computers, vol. 65,
no.5, pp.1558-1565, May 2016 Article (CrossRef
Link)

[3] J. Mun, and H. Lim, "On Reducing False Positives of
a Bloom Filter in Trie-Based Algorithms," IEIE

Fig. 8. Worst-case number of node accesses.

Fig. 9. Average number of node accesses.

Fig. 10. Worst-case number of prefix comparisons.

Fig. 11. Average number of prefix comparisons.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5930300
http://dx.doi.org/10.1109/TC.2015.2444850
http://dx.doi.org/10.1109/TC.2015.2444850

Lee et al.: Multi-Stride Decision Trie for IP Address Lookup

336

Transactions on Smart Processing & computing, vol.
4, no. 3, pp.163-168 Article (CrossRef Link)

[4] J. Lee, and H. Lim,"Binary Search on Trie Levels
with a Bloom Filter for Longest Prefix Match,” IEEE
HPSR, Jul. 2014, pp. 38-43. Article (CrossRef Link)

[5] M. Kwon, P. Reviriego; S. Pontarelli “A length-
aware cuckoo filter for faster IP lookup,” 2016 IEEE
Conference on Computer Communications Workshops,
2016 Article (CrossRef Link)

[6] H. Lim, K. Lim, N. Lee, and K. Park, “On Adding
Bloom Filters to Longest Prefix Matching Algorithms,”
IEEE Trans. on Computers, vol. 63, no. 2, pp.411-
423, Feb. 2014. Article (CrossRef Link)

[7] K. Kim and S. Sahni, “Efficient Construction of
Pipelined Multibit-Trie Router-Tables,” IEEE Trans.
on Computers, vol. 56, no. 1, pp.32-43, Jan. 2007.
Article (CrossRef Link)

[8] C. Lin, C. Hsu, and S. Hsieh, “A Multi-index Hybrid
Trie for IP Lookup and Updates,” IEEE Trans. On
Parallel and Distributed Systems, 2014. Article
(CrossRef Link)

[9] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S.
Sproull, D. B. Parlour, “Scalable IP Lookup for
Internet Routers,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 4, pp.522-534, 2003.
Article (CrossRef Link)

[10] O. Erdem and C. F. Bazlamacci, “Array Design for
Trie-based IP Lookup,” IEEE Communications
Letters, vol.14, no.8, pp.773–775, 2010. Article
(CrossRef Link)

[11] Q. Sun, Z. Li, and Y. Ma, “Overlapping Hash Trie: A
Longest Prefix First Search Scheme for IPv4/IPv6
Lookup,” ICCT, pp.1-4, 2006. Article (CrossRef
Link)

[12] L. Wuu, K. Chen, T. Liu, “A Longest Prefix First
Search Tree for IP Lookup,” ICC, pp. 989-993, 2005.
Article (CrossRef Link)

[13] P. Gupta and N. McKeown, “Classifying packets
with hierarchical intelligent cuttings,” IEEE Micro,
vol. 20, no. 1, pp.34-41, Jan./Feb. 2000. Article
(CrossRef Link)

[14] H. Lim, C. Yim, and Earl E. Swartzlander, Jr.,
“Priority Tries for IP Address Lookup,” IEEE Trans.
on Computers, vol. 59, no. 6, pp. 784- 794, Jun. 2010.
Article (CrossRef Link)

Jungwon Lee received the B.S. degree
in Mechatronics Engineering from
Korea Polytechnic University, Gyeong-
gi-do, Korea, in 2011 and M.S. degree
at the Department of Electronics
Engineering at Ewha Womans
University, Seoul, Korea, in 2013. She
is currently pursuing a Ph.D. degree

from the Department of Electronics Engineering at Ewha
Womans University. Her research interests include address
lookup, packet classification algorithms, and packet
forwarding using Bloom filters at Content-Centric
Networks.

Hyesook Lim received the B.S. and
M.S. degrees at the Department of
Control and Instrumentation Engi-
neering in Seoul National University,
Seoul, Korea, in 1986 and 1991,
respectively. She received the Ph.D.
degree at the Electrical and Computer
Engineering from the University of

Texas at Austin, Texas, in 1996. From 1996 to 2000, she
had been employed as a member of technical staff at Bell
Labs in Lucent Technologies, Murray Hill, NJ, USA. From
2000 to 2002, she had worked as a hardware engineer for
Cisco Systems, San Jose, CA, USA. She is currently a
professor in the Department of Electronics Engineering,
Ewha Womans University, Seoul, Korea, where she
perform research on packet forwarding algorithms such as
IP address lookup and packet classification, and in Content
Centric Networks. She was awarded Year 2014 Women in
Sciences and Technologies by the Ministry of Science,
ICT and Future Planning of Korea. She is a senior member
of the IEEE.

Copyrights © 2016 The Institute of Electronics and Information Engineers

https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjq3M23m9nPAhUINI8KHXFuCrAQFggdMAA&url=http%3A%2F%2Fwww.ieiespc.org%2Finclude%2Fpdfdownload.asp%3Ffilename%3DIEEKSPC_2015_4_3_20150715183636_1.pdf&usg=AFQjCNFqs2Fbf9Xt5qAYjMdgl25P2C9Dtw&sig2=oYZVysh788jUUg0wZnNY5A&bvm=bv.135475266,d.cGw
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6900879
http://dx.doi.org/10.1109/infcomw.2016.7562258
http://dx.doi.org/10.1109/TC.2012.193
http://dx.doi.org/10.1109/TC.2007.250621
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6585242
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6585242
http://dx.doi.org/10.1109/JSAC.2003.810507
http://dx.doi.org/10.1109/LCOMM.2010.08.100398
http://dx.doi.org/10.1109/LCOMM.2010.08.100398
http://ieeexplore.ieee.org/document/4146406/?reload=true&arnumber=4146406
http://ieeexplore.ieee.org/document/4146406/?reload=true&arnumber=4146406
http://www.sciencedirect.com/science/article/pii/S1389128607000485
http://dx.doi.org/10.1109/40.820051
http://dx.doi.org/10.1109/40.820051
http://dx.doi.org/10.1109/TC.2010.38

