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* Short Paper 

 

Abstract: We propose a parametric blind deconvolution method for bi-level images with unknown 
intensity levels that estimates unknown parameters for point spread functions and images by 
minimizing a penalized nonlinear least squares objective function based on normalized correlation 
coefficients and two regularization functions. Unlike conventional methods, the proposed method 
does not require knowledge about true intensity values. Moreover, the objective function of the 
proposed method can be effectively minimized, since it has the special structure of nonlinear least 
squares. We demonstrate the effectiveness of the proposed method through simulations and 
experiments.     
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1. Introduction 

We study the blind restoration of a blurred, noisy, bi-
level image, which is frequently required in barcode 
decoding, text image processing, etc. [1-3]. The blurred, 
noisy image is often modeled by the convolution of a true 
bi-level image and an unknown point spread function 
(PSF), plus additive noise, as follows [1]: 

 
 ( ) ( ) ( ) ( )* , 0,1, , 1i i i iy t x t g t n t i N= + = … −     (1) 

 
where , 0,.1, , 1it i N= … −  denotes spatial locations for 
one-dimensional (1D) or 2D images, *  is the convolution 
operator, ( )iy t  denotes a blurred, noisy, observed image, 

( )ig t  is the value of the unknown PSF, ( )ix t  is the value 
of the true bi-level image, and ( )in t  denotes the value of 
additive white Gaussian noise. True image x  has only two 
unknown intensity values. For out-of-focus blur, the PSF is 
often parameterized using the Gaussian function with 
unknown standard deviation 0σ > , as follows [1]: 
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Under the Gaussian noise assumption, the maximum 
likelihood estimation of x  would be the minimizer of the 
sum of square errors between ( )iy t  and ( ) ( )*i ix t g tσ . 
Since minimization of the sum of square errors is an ill-
posed problem, in the sense that the solution is not unique, 
incorporation of regularization functions based on a priori 
information about a true image is essential to determine a 
unique solution. One of the most frequently used 
regularization methods is the total variation (TV) penalty 
method, which is based on a priori information that the 
true image has little variation in the spatial domain [4]. 
Since the TV penalty function does not fully utilize the 
important a priori information that the true image has only 
two intensity values, a previous investigation proposed a 
method that incorporates an additional double-well penalty 
function that encourages a restored image to be a bi-level 
of 0 and 1, which is defined as follows [1]: 
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where λ  and γ  are regularization parameters for TV and 
the double-well function, respectively. Although the TV 
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with known intensities method defined in (3) is useful for 
theoretical study of bi-level image restoration, it is not 
practically applicable, since the method assumes that the 
true bi-level image has intensity values of 0 and 1, which 
is not true, in general. Note that it is not only the true 
intensity values that are not known in practice, but 
estimation of the true intensity values from the observed 
image is challenging, too, due to blur and noise. Other 
methods for bi-level image restoration also assume that the 
two intensity values are known [5]. Although there is an 
investigation that can be used for bi-level images with 
unknown intensity values, the method is limited for 
invertible PSF [6]. Note that the out-of-focus blur defined 
in (2) is not invertible. 

2. Method 

In this short paper, we propose parametric blind 
deconvolution of bi-level images with unknown intensity 
values. We estimate image x  and σ  by minimizing 
penalized nonlinear least squares as follows: 

 
 ( ) ( ) ( ) ( )0, 1 1 2 2ˆ ,ˆ, xx argmin F x R x R xσσ σ λ λ>= + +   (4) 

 
where ( )1R x  and ( )2R x  are regularization functions, 

1λ and 2λ  are associated regularization parameters, and 

( ),F x σ  is a data fidelity term defined as follows: 
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where ( ),if x σ  is  

 

 ( ) ( )
, i y

i
y

y t m
f x σ

γ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠

( ) ( ) *

*

*i i x g

x g

x t g t m

σ

σ σ

γ

⎛ ⎞−
−⎜ ⎟⎜ ⎟
⎝ ⎠

  (6) 

 
where ym  and *x gm

σ
 are the sample means, and 2

yγ  and 
2
*x gσ

γ  are the sample variances of ( )iy t  and ( )*ix t  

( ) , 0,1, , 1,ig t i Nσ = … −  which are defined as follows: 
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Note that the data fidelity term in the objective function 

in (5) is closely related to the normalized correlation 
coefficient, as shown in the following: 
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where ( ), *C y x gσ  denotes the normalized correlation 
coefficient between y  and  *x gσ .Therefore, minimizing 

( ),F x σ  in (5) is equivalent to maximizing ( ), *C y x gσ . 
Since the normalized correlation coefficient has the 
maximum value of unity when two signals have the same 
shape, regardless of scale and levels, we use (5) as a data 
fidelity term that is independent of true intensity values. 
Since restored bi-level images are binarized for further 
processing, such as decoding or character recognition, 
restoring a more bi-level–like image that can be more 
correctly binarized is sufficient for the restoration of bi-
level images. The advantage in using the proposed 
nonlinear least squares type of data fidelity term in (5) 
over the normalized correlation coefficient is from fast 
convergence using specialized algorithms for nonlinear 
least squares, such as Gauss-Newton and Levenberg-
Marquardt [7]. In particular, when a residual term of the 
objective function is small, the optimization methods for 
nonlinear least squares converge approximately 
quadratically [7]. We incorporate two regularization 
functions: a quadratic roughness penalty function to 
suppress noise, and another penalty function to encourage 
an estimated image to be bi-level. We design the 
roughness penalty function in (4) as follows: 
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The roughness penalty function in (10) encourages the 

estimated image to be smooth, thereby making the 
estimated image robust against noise. In conventional 
methods, to reduce the noise effect while preserving edges, 
a TV method is often used [1]. However, we use the 
quadratic roughness penalty function in (10). Since we 
have another penalty function that encourages the 
estimated image to be bi-level, we are able to preserve 
edges while using the quadratic smoothness penalty 
function. We designed the penalty function for estimated 
images to have two intensities (+1 and -1) as follows: 

 

 ( ) ( )( )
1 22

2
0

1
N

i
i

R x x t
−

=

= −∑                        (11) 

 
Note that the objective function of the proposed 

method, which is the combination of (5), (10), and (11), 
has the special structure of nonlinear least squares. 

3. Experimental Results 

To demonstrate the performance of the proposed 
method, we conducted simulations with a 1D bi-level 
signal and its noisy, blurred signal (shown in Fig. 1). We 
synthesized the blurred and noisy observed signal by 
convolving a true bi-level signal with a Gaussian PSF 
(σ = 16 pixels). The size of the signal was 625 pixels, the 
intensity values of the true bi-level signal were {2,6}, and 
the signal-to-noise ratio (SNR) of the blurred, noisy signal 
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was 30 dB. 
We restore the degraded image via the proposed 

method. For comparison purposes, we also attempted to 
restore the degraded image by Wiener filtering, which is 
the well-known linear least squares error filter if PSF and 
SNR are known. Although the Wiener filter cannot be 
applied for blind deconvolution, since neither the PSF nor 
the SNR are known, we report results using ideal Wiener 
filtering with true PSF and SNR for comparison purposes. 
Such ideal Wiener filtering was used for evaluating the 
performance of linear restoration in a previous 
investigation [6].  

Fig. 1 shows restored signals via the proposed method 
and the Wiener filter. As shown in the figure, the restored 
signal from the proposed method was more similar to the 
true signal. We think the superiority of the proposed 

method originates from the two effective regularization 
functions.  

We claimed that the advantage of the proposed method 
over maximizing the normalization coefficient is faster 
convergence, thanks to the special structure of nonlinear 
least squares in our objective function. To support the 
claim, we compared the convergence of the Levenberg-
Marquardt method, which is for nonlinear least squares, 
with the quasi-Newton method for general optimization. 
Fig. 1(b) shows the convergence rates of the two 
optimization methods. As shown in Fig. 1(b), the 
Levenberg-Marquardt method converged a lot faster than 
the quasi-Newton method. Note that minimization using 
nonlinear least squares converged very quickly. 

To evaluate the statistical properties of the proposed 
method, we repeated 50 simulations of different noise 

      
                                                             (a)                                                                                               (b) 

Fig. 1. (a) Noisy, blurred signals and restored signals from the three methods, (b) convergence of Gauss–Newton 
and quasi-Newton methods in the proposed method. 

 
 

Table 1. Correlation Coefficient of Restored Image. 

Blurred Wiener Proposed 
σ  σ  σ  SNR 

(dB) 
13 16 19 22 13 16 19 22 13 16 19 22 

35 0.84 0.78 0.73 0.68 0.94 0.94 0.91 0.86 0.99 0.99 0.99 0.96 

30 0.84 0.78 0.73 0.68 0.94 0.93 0.89 0.85 0.99 0.98 0.96 0.97 

25 0.83 0.78 0.72 0.68 0.94 0.91 0.86 0.83 0.99 0.99 0.99 0.98 

20 0.83 0.77 0.72 0.68 0.93 0.89 0.84 0.80 0.99 0.99 0.97 0.92 

 
 

Table 2. Bit Error Rates of Restored Image (%). 

Blurred Wiener Proposed 
σ  σ  σ  SNR 

(dB) 
13 16 19 22 13 16 19 22 13 16 19 22 

35 2.65 7.44 18.0 23.7 1.41 1.55 3.02 5.35 0.06 0.14 0.10 2.23 
30 2.76 7.45 17.4 23.6 1.50 1.85 4.17 5.53 0.16 0.22 0.28 1.88 
25 3.00 7.59 16.7 23.3 1.64 2.83 4.93 4.92 0.52 0.50 0.72 1.28 
20 3.64 8.25 16.8 22.9 1.91 2.73 4.61 5.10 0.58 0.80 1.56 4.31 

 



Kim et al.: Parametric Blind Restoration of Bi-level Images with Unknown Intensities  

 

322

realizations for different amounts of blur and noise. Then, 
we computed the correlation coefficient of the restored 
image and the true image, and the bit error rate of the 
restored image after binarization. We used the well-known 
Otsu method for the binarization [8]. Tables 1 and 2 show 
the correlation coefficients and bit error rates, respectively. 
As shown in the tables, the proposed method outperformed 
the Wiener filter method with true PSF and SNR. We 
believe this is due to the fact that our method is a nonlinear 
filtering method using effective regularization. Although 
the Wiener filter should have the least error among the 
linear filtering methods, there may exist nonlinear filters 
that can yield a smaller error than the Wiener filter. 

To demonstrate the effectiveness of the proposed 
method for real images, we conducted experiments using a 
barcode image acquired by a Cannon EOS40D digital 
camera. Fig. 2(a) shows an acquired noisy, blurred barcode 
image, and Fig. 2(b) shows one line of the acquired image 
and restored signal using the proposed method. Note that 
we were not able to apply Wiener filtering to the real 
image since true PSF was not known. We normalized the 
acquired image in such a way that intensity values lie 
between -1 and 1. As shown in Fig. 2(b), the restored 
signal using the proposed method is more similar to the 
true bi-level signal. As shown in Fig. 2(b), the proposed 
method was able to restore small peaks in the central part 
of the signal, thereby making the restored signal correctly 
decodable. 

4. Conclusion 

We propose a parametric blind deconvolution method 
for bi-level images with unknown intensity levels. Unlike 
conventional methods, the proposed method does not 
require knowledge about true intensity values, since it is 
based on the normalized correlation coefficient. Moreover, 
the objective function of the proposed method can be more 
effectively minimized than the normalized correlation 
coefficient thanks to the special structure of nonlinear least 
squares. In simulations and experiments, the proposed 
method performed better than the ideal Wiener filtering 
method. We believe that the proposed method should be 
useful for parametric blind deconvolution of bi-level 
images, since true intensity values of bi-level images are 
not known in practice. 
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Fig. 2. (a) Real barcode image, (b) one horizontal line of
the real barcode and the restored signals from the
proposed and TV-based methods.  
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