DOI QR코드

DOI QR Code

A Comparison Study of Ensemble Approach Using WRF/CMAQ Model - The High PM10 Episode in Busan

앙상블 방법에 따른 WRF/CMAQ 수치 모의 결과 비교 연구 - 2013년 부산지역 고농도 PM10 사례

  • Kim, Taehee (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Department of Atmospheric Sciences, Pusan National University) ;
  • Shon, Zang-Ho (Department of Environmental Engineering, Dong-Eui University) ;
  • Jeong, Ju-Hee (Department of Atmospheric Sciences, Pusan National University)
  • 김태희 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 대기환경과학과) ;
  • 손장호 (동의대학교 환경공학과) ;
  • 정주희 (부산대학교 대기환경과학과)
  • Received : 2016.07.20
  • Accepted : 2016.10.05
  • Published : 2016.10.31

Abstract

To propose an effective ensemble methods in predicting $PM_{10}$ concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly $PM_{10}$ concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean $PM_{10}$ concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.

Keywords

References

  1. Baker, L., A. Rudd, S. Migliorini, and R. Bannister (2014) Representation of model error in a convective-scale ensemble prediction system, Nonlinear Processes in Geophysics, 21, 19-39. https://doi.org/10.5194/npg-21-19-2014
  2. Djalalova, I., J. Wilczak, S. McKeen, G. Grell, S. Peckham, M. Pagowski, L. DelleMonache, J. McQueen, Y. Tang, P. Lee, J. McHenry, W. Gong, V. Bouchet, and R. Mathur (2010) Ensemble and bias-correction techniqeus for air quality model forecsts of surface $O_3$ and $PM_{2.5}$ during the TEXAQS-II experiment of 2006, Atmospheric Environment, 44, 455-467. https://doi.org/10.1016/j.atmosenv.2009.11.007
  3. Epstein, E.S. (1969) Stochastic dynamic prediction, Tellus, 21, 739-759. https://doi.org/10.1111/j.2153-3490.1969.tb00483.x
  4. Huijnen, V., H.J. Eskes, A. Poupkou, H. Elbern, K.F. Boersma, G. Foret, M. Sofiev, A. Valdebenito, J. Flemming, O. Stein, A. Gross, L. Fobertson, I.M. D'Isidoro, Kioutsioukis, E. Friese, B. Amstrup, R. Bergstrom, A. Strunk, J. Vira, D. Zyryanov, A. Maurizi, D. Melas, V.-H. Peuch, and C. Zerefos (2010) Comparison of OMI $NO_2$ tropospheric columns with an ensemble of global and European regional air quality models, Atmospheric Chemistry and Physics, 10, 3273-3296. https://doi.org/10.5194/acp-10-3273-2010
  5. Jang, I.-S., D.-G. Lee, J.A. Yu, S.-C. Hong, J.-S. Son, and J.-Y. Choi (2014) $PM_{10}$ forecasting status and improvement measures, Proceedings of the Spring Meeting of KMS.
  6. Kim, D.Y. (2009) PM analysis using CMAQ in Seoul metropolitan area, Policy research, 6, 1-43. (in Korean with English abstract)
  7. Kim, S.H., H.M. Kim, J.K. Kay, and S.-W. Lee (2015) Development and Evaluation of the high resolution limited area ensemble prediction system in the Korea Meteorological Administration, Atmosphere, Korean Meteorological Society, 25(1), 67-83. (in Korean with English abstract)
  8. Leith, C.E. (1974) Theoretical skill of Monte Cario forecasts, Monthly Weather Review, 102, 409-418. https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
  9. Mckeen, S., J. Wilczak, G. Grell, I. Djalalova, S. Peckham, E.-Y. Hsie, W. Gong, V. Bouchet, S. Menard, R. Moffect, J. McHenry, J. McQueen, Y. Tang, G.R. Carmichael, M. Pagowski, A. Chan, T. Dye, G. Frost, P. Lee, and R. Mthur (2005) Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004, Journal of Geophysical Research, 110.
  10. Monache, L.D. and R.B. Stull (2003) An ensemble air-quality forecast over western Europe during an ozone episode, Atmospheric Environment, 37, 3469-3474. https://doi.org/10.1016/S1352-2310(03)00475-8
  11. Monache, L.D., J.P. Hacker, Y. Zhou, X. Deng, and R.B. Stull (2006) Probabilistic aspects of meteorological and ozone regional ensemble forecasts, Journal of Geophysical Research, 11.
  12. Monteiro, A., I. Ribeiro, O. Tchepel, E. Sa, J. Ferreira, A. Carvalho, V. Martins, A. Strunk, S. Galmarini, H. Elbern, M. Schaap, P. Builtjes, A.I. Miranda, and C. Borrego (2013) Bias correction techniques to improve air quality ensemble predictions: Focus on $O_3$ and PM over Portugal, Environmental Modeling & Assessment, 18(5), 533-546. https://doi.org/10.1007/s10666-013-9358-2
  13. Moon, Y.-S., Y.-K. Lim, and K. Lee (2011) An estimation of concentration of asian dust ($PM_{10}$) using WRFSMOKE-CMAQ (MADRID) during springtime in the Korean Peninsula, Journal of the Korean Earth Science Society, 32(3), 276-293. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2011.32.3.276
  14. National Institute of Environmental Research (2014) Studies on the optimization method for improving the accuracy of air quality modeling, Korea.
  15. Pagowski, M., G.A. Grell, D. Devenyi, S.E. Peckham, S.A. Mckeen, W. Gong, L.D. Monache, J.N. McHenry, J. McQueen, and P. Lee (2006) Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts, Atmospheric Environment, 40, 3240-3250. https://doi.org/10.1016/j.atmosenv.2006.02.006
  16. Shin, H.-J., Y.-J. Lim, J.-H. Kim, H.-J. Jung, S.-M. Park, J.-S. Park, I.-H. Song, S.-J. Seo, Y.-D. Hong, and J.-S. Han (2014) The characteristics of long term high PM episode occurred in Feb. 2014, Journal of the Korean Society of Urban Environment, 14(3), 223-232. (in Korean with English abstract)
  17. Solazzo, E., R. Bianconi, R. Vautard, K.W. Appel, M.D. Moran, C. Hogrefe, B. Bessagnet, J. Brandt, J.H. Christense, C. Chemel, I. Coll, H.D. Gon, J. Ferreira, R. Forkel, X.V. Francis, G. Greel, P. Grossi, A.B. Hansen, A. Jericevic, L. Kraljevic, A.I. Miranda, U. Nopmongcol, G. Provano, M. Prank, A. Riccio, K.N. Sartelet, M. Schaap, J.D. Silver, R.S. Sokhi, J. Vira, J. Verhahn, R. Wolke, G. Yarwood, J. Zhang, S.T. Rao, and S. Galmarini (2012) Model evaluation and ensemble modeling of surface-levle-ozone in Europe and North America in the context of AQMEII, Atmospheric Environment, 53, 60-74. https://doi.org/10.1016/j.atmosenv.2012.01.003
  18. Vautard, R., M. Schapp, R. Mergstrom, B. Bessagnet, J. Brandt, P.J.H. Builtjes, J.H. Christensen, C. Cuvelier, V. Foltescu, A. Graff, A. Kerschbaumer, M. Krol, P. Roberts, L. Rouïl, R. Sern, L. Tarrason, P. Thunis, E. Vignati, and P. Wind (2009) Skill and uncertainty of a regional air quality model ensemble, Atmospheric Environment, 43, 4822-4832. https://doi.org/10.1016/j.atmosenv.2008.09.083
  19. Yoo, C., D. Lee, Y. Lee, M.-H. Lee, J. Hong, and S. Lee (2011) Methodology of application to air quality model to evaluate the results of the enforcement plan in Seoul metropolitan area, Journal of the Environmental Sciences, 20(12), 1647-1661. (in Korean with English abstract) https://doi.org/10.5322/JES.2011.20.12.1647
  20. Zabkar, R., D. Koracin, and J. Rakovec (2013) A WRF/Chem sensitivity study using ensemble modeling for a high ozone episode in Slovenia and the Northern Adriatic area, Atmospheric Environment, 77, 990-1004. https://doi.org/10.1016/j.atmosenv.2013.05.065