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Abstract 

 

In this paper, we propose the 16-bits optimization design of the ARIA block-cipher algorithm for 

embedded systems with 16-bits processors. The proposed design adopts 16-bits XOR operations and rotated 

shift operations as many as possible. Also, the proposed design extends 8-bits array variables into 16-bits 

array variables for faster chained matrix multiplication. In evaluation experiments, our design is compared 

to the previous 32-bits optimized design and 8-bits optimized design. Our 16-bits optimized design yields 

about 20% faster execution speed and about 28% smaller footprint than 32-bits optimized code. Also, our 

design yields about 91% faster execution speed with larger footprint than 8-bits optimized code. 
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1. Introduction 

With rapid growth of information technology and science of encryption, many cryptographic 

products have been developed for secure communications [1,2,3]. Symmetric-key cryptographic 

algorithms apply a shared secret key to both encryption and decryption processes. Asymmetric-key 

cryptographic algorithms apply a public key to encryption process and a private key to decryption 

process. Popular symmetric-key algorithms are data encryption standard (DES), triple encryption with 

DES (Triple-DES) and advanced encryption standard (AES) [4]. The AES algorithm [5] is the most 

prevalently used for commercial markets. Popular asymmetric-key algorithms are RSA, Diffie-

Hellman and elliptic-curve cryptography (ECC) [4]. 

Recently, a 128-bits block cipher called ARIA [6] is proposed. The ARIA is a symmetric-key 

cryptography algorithm and includes an involutional substitution and permutation encryption network 

(SPN) which is not totally involutional. Also, the ARIA contains a diffusion layer to resist against 

powerful attacks such as collision attacks, partial sum attacks and truncated differential attacks [6]. 
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The original design of ARIA algorithm has many 8-bits computations and thus suitable for 8-bits 

processors. Another design is given to be suitable for 32-bits processors [7]. However, there is no 

design suitable for 16-bits processors although 16-bits processors are widely employed by many 

embedded systems [8,9]. 

The proposed design optimizes the execution speed of the ARIA algorithm for embedded systems 

with 16-bits processors. The ARIA algorithm consists of three parts: round key addition, substitution 

layer, and diffusion layer. The proposed design first modifies the diffusion layer so as to reduce the 

number of XOR operations requested for the chained matrix multiplication calculation of the diffusion 

layer. Our design applies 16-bits XOR operation instead of 8-bits XOR operations. This modification 

of the diffusion layer requires 16-bits extensions of 8-bits array variables used in the substitution layer. 

The proposed design extends 8-bits array variables into 16-bits array variable for faster matrix 

multiplication calculation of the diffusion layer. Also, the proposed design employs 16-bits XOR 

operations and rotated shift operations as many as possible using the extended 16-bits array variables.  

In experiments with ATmega2560 micro-controllers, yields about 20% faster execution speed and 

about 28% smaller size (footprint) of translated machine code than the 32-bits optimized code. 

Compared to the 8-bits optimized code, our code yields about 91% faster execution speed with a 

larger space requirement. 

The rest of this paper is organized as follows; Section 2 explains the outline of the original ARIA 

algorithm. Section 3 describes the proposed design in detail. Section 4 shows evaluation results of the 

proposed design. Section 5 provides concluding remarks. 

 

2. Outline of ARIA Algorithm 

 

The ARIA algorithm consists of three parts: round key addition, substitution layer, and diffusion 

layer. The round key addition part performs XOR operations of the 128-bit round key. The XOR 

operation is denoted as . The substitution layer part replaces inputs with their position-

corresponding values in two types of S-Boxes (S1, S2) and their inverses (S1
-1

, S2
-1

). The pre-calculated 

values of S1, S2, S1
-1

, and S2
-1

 are stored in constant array variables, as shown in Figure 1 and Figure 2. 

For example, S1(0x01)=0x7c, S2(0x02)=0x54, S1
-1

 (0xf0)=0x17, and S2
-1

(0xf1)=0x8a.  

 

 

Figure 1. Values of S-box S1 and S1
-1 
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Figure 2. Values of S-box S2 and S2
-1 

 

There are two types of S-box layers as shown in Figure 3. Type 1 is used in odd rounds and type 2 

is used in even rounds. 

 

 

Figure 3. Two Types of S-box Layers 

 

The diffusion layer generates an output vector (y0, …, y15) with an input vector of (x0, …, x15), 

where  

 

 
 

The diffusion layer can be expressed with an equivalent matrix multiplication as shown in Figure 4.  



Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors                                                       45 

   

 

 

 

Figure 4. Matrix Multiplication for the Diffusion Layer 

 

The encryption and decryption processes of an n-round ARIA are shown in Figure 5, when n is 10, 

12 and 14 for 128-bit, 192-bit and 256-bit secret keys, respectively. The encryption and decryption 

processes are identical except in the use of round keys, eki.  

 

 

Figure 5. Encryption and Decryption Processes 
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The round keys, eki, are generated according to the following operation, where “<<<  n” denotes the 

left circular rotation by n bits and “>>> n” denotes the right circular rotation by n bits. Four 128-bits 

values W1, W2, W3 and W4 are generated from the mater key by using 3-round 256-bits Feistel cipher 

[3]. 
 

 

Figure 6. Calculation for the Round Key Generation 

 

3. Proposed Design 

The proposed method modifies the diffusion layer design of the 32-bits optimized method [3] so as 

to work with 16-bits computations as follows; The matrix multiplication of the diffusion shown in 

Figure 4 can be reformulated with a matrix form A = M1
-1 M2  M1, where M2 is a 1616 involutional 

block diagonal matrix and M1 is a 1616 involutional matrix (i.e., M1
-1

=M1). The matrix M2 has a form 

M2= P  M. 
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When S denotes the S-box substitution, the one round except for key addition can be written as A S 

= M1
-1M2  M1  S= M1M2  M1  S [3]. Because the form M1  S is not implemented efficiently by 832 

table lookups, the formulation of the diffusion layer is modified as follows:  

 

A S = M1
  M2  M1  S = M1 P  M  M1  S = M1

  P  M  M1  M  M  S  
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= M1  P  M  M  M1  M  S = M1  P  M1  M  S. 

Then M  S can be expressed respectively for odd rounds and even rounds as follows:  
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where S in odd rounds is 

S = [S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

]
T
 

 

and S in even rounds is  

S = [S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2]
T
. 

Let us check the left-upper quarter part of the above M  S calculation with S = [S1, S2, S1
-1

, S2
-1

, S1, 

S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

]
T
. This part performs 24 XOR operations of 8-bits values 

such as S1, S2, S1
-1

, and S2
-1

 as below: 
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For optimized operation of 16-bits processors, the above equation can be reformulated with 16-bits 

values such as 0x00S1, 0xS200, 0xS1
-1

S1
-1

, 0xS2
-1

S2
-1

, 0xS1S1, 0xS2S2, 0x00S1
-1

, and 0xS2
-1

00 as below: 

 



48                                                       International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)  
 

= 

(

 
 
 
 
 
 
 
[
  
  
]
 

  [
   
 
]
 

  [
  
   

  
  ]

 

  [
  
   

  
  ]

 

 

[
   
  
]
 

  [
   
  
]
 

  [
  
  
  ]

 

  [  
   
 
]
 

[
  
  
]
 

  [
   
 
]
 

  [
  
   

  
  ]

 

  [
  
   

  
  ]

 

[
   
  
]
 

  [
   
  
]
 

  [
  
  
  ]

 

  [  
   
 
]
 

)

 
 
 
 
 
 
 

 

 

The above formulation performs 12 XOR operations of 16-bits values, whereas the original 

formulation performs 24 XOR operations of 8-bits values. As results, the modified formulation 

enhances the processing speed of 16-bits processors. On the contrary, the modified formulation 

requires the 16-bits extension of 8-bits values: for example, 0xS1  0x00S1 and 0xS1  0xS1S1. For 

faster operation, the 16-bits extensions (such as 0x00S1, 0xS200, 0xS1
-1

S1
-1

, 0xS2
-1

S2
-1

, 0xS1S1, 0xS2S2, 

0x00S1
-1

, and 0xS2
-1

00) are pre-calculated and stored in array variables. For example, 

0x00S1(0x01)=0x007c, 0xS2S2(0x02)=0x5454, 0x00S1
-1

(0xf0)=0x0017, and 0xS2
-1

S2
-1

(0xf1)=0x8a8a.  

 

 

Figure 7. Codes for Matrix Operation P  M1  M  before Modification 

 

The modified formulation requires the matrix operation A S = M1  P  M1  M  S to be modified to 

calculate with the 16-bits extended values. Figure 7 shows the code before the modification. The 

matrix operation M is denoted with a macro code, SBL1_M(T0, T1, T2, T3), where T0, T1, T2 and T3 are 32-
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bits variables. The matrix operations M1 is denoted with a macro code, MM(T0, T1, T2, T3), and the matrix 

operation P is denoted with a macro code, P(T0, T1, T2, T3). 

Figure 8 shows the code after the modification, where t0, t1, t2 and t3 are the pointer of 16-bit array 

variables t0[2], t1[2], t2[2] and t3[2]. In the modified codes, __t[2] is a temporary 16 -bit array variable. 

 

 

Figure 8. Codes for Matrix Operation P  M1  M  after Modification 

 

Also the modified formulation requires the round key generation process, shown in Figure 6, to be 

modified to calculate with the 16-bits extended values. Figure 9 shows the circular rotation code after 

the modification, and Figure 10 shows the circular rotation code after the modification. 
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Figure 9. Code for Round Key Generation before Modification 

 

 

Figure 10. Code for Round Key Generation after Modification 

 

4. Evaluation 

We compare the proposed 16-bits optimized code with open source codes optimized for 32-bits 

processors and 8-bits processors. The 32-bits optimized code and 8-bits optimized code are distributed 

by KISA [10]. The three codes are compiled with the AVR compiler and translated into executable 

machine codes. The translated machine codes are applied to Atmel ATmega2560 micro-controllers. 

Table 1 shows the execution time of the three codes. When encrypting a 128-bits block message, each 

code requires both encryption key setup procedure and encryption procedure. When decrypting a 128-

bit encrypted block message, each code requires both decryption key setup procedure and decryption 

procedure. Compare to the 32-bits optimized code, the proposed 16-bits optimized code enhance the 
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execution speed by about 20%. Also, compared to the 8-bits optimized code, the proposed code 

enhances the execution speed by 91%.  

Table 1. Execution Speed of Three Codes 

 
32-bits Optimized 

Code 

8-bits Optimized 

Code 

16-bits Optimized 

Code 

Encryption Key Setup Exec. 

Time 
864 µsec. 14,252 µsec. 480 µsec. 

Encryption  

Exec. Time 
532 µsec. 828 µsec. 600 µsec. 

Decryption Key Setup Exec. 

Time 
1,264 µsec. 14,768 µsec. 860 µsec. 

Decryption  

Exec. Time 
532 µsec. 816 µsec. 600 µsec. 

Total Exec. Time 3,192 µsec. 30,664 µsec. 2,540 µsec. 

 

Table 2 shows the space requirements of the three codes. Compare to the 32-bits optimized code, 

the proposed 16-bits optimized code reduces the translated machine code size (footprint) by about 

28%. The memory usages of two codes are equal. Compare to the 8-bits optimized code, the proposed 

code requires a larger machine code size and memory usage. However, our 16-bits optimized code is 

faster than the 8-bits by more than 10 times. Consequently, our 16-bits optimized code is the best 

choice for systems with fast speedup requirements and the 8-bits optimized code is the best choice for 

systems with small memory usage requirements.  

 

Table 2. Space Requirements of Three Codes 

 32-bits Optimized Code 8-bits Optimized Code 
16-bits Optimized 

Code 

Machine Code Size 31,094 bytes 6,518 bytes 22,366 bytes 

Memory Usage 4,458 bytes 1,386 bytes 4,458 bytes 

 

 

5. Conclusions 

The proposed design optimizes the execution speed of the 128-bits block cipher ARIA for 16-bits 

processors, whereas the previous studies handled only the 32-bits optimization and the 8-bits 

optimization of the ARIA algorithm. The proposed design extends 8-bits array variables into 16-bits 

array variables for faster chained matrix multiplication. Also, the proposed design adopts 16 -bits XOR 

operations and rotated shift operations as many as possible. In evaluation experiments, our 16-bits 

optimized code yields about 20% faster execution speed and about 28% smaller footprint, compared to 
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the 32-bits optimized code. Compared to the 8-bits optimized code, our code yields about 91% faster 

execution speed with a larger space requirement. 
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