
International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

http://dx.doi.org/10.7236/IJIBC.2016.8.1.42

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with

16-bits Processors

Wan Yeon Lee
1*

, Yun-Seok Choi
2

1

Dept.

of Computer Science, Dongduk Women’s University, Seoul 136-714, South Korea,

Email: wanlee@dongduk.ac.kr
2
 Dept.

of Computer Science, Dongduk Women’s University, Seoul 136-714, South Korea,

Email: cooling@ dongduk.ac.kr

Abstract

In this paper, we propose the 16-bits optimization design of the ARIA block-cipher algorithm for

embedded systems with 16-bits processors. The proposed design adopts 16-bits XOR operations and rotated

shift operations as many as possible. Also, the proposed design extends 8-bits array variables into 16-bits

array variables for faster chained matrix multiplication. In evaluation experiments, our design is compared

to the previous 32-bits optimized design and 8-bits optimized design. Our 16-bits optimized design yields

about 20% faster execution speed and about 28% smaller footprint than 32-bits optimized code. Also, our

design yields about 91% faster execution speed with larger footprint than 8-bits optimized code.

Keywords: Block cipher, ARIA, 16-bits Processor, Optimization, Embedded System

1. Introduction

With rapid growth of information technology and science of encryption, many cryptographic

products have been developed for secure communications [1,2,3]. Symmetric-key cryptographic

algorithms apply a shared secret key to both encryption and decryption processes. Asymmetric-key

cryptographic algorithms apply a public key to encryption process and a private key to decryption

process. Popular symmetric-key algorithms are data encryption standard (DES), triple encryption with

DES (Triple-DES) and advanced encryption standard (AES) [4]. The AES algorithm [5] is the most

prevalently used for commercial markets. Popular asymmetric-key algorithms are RSA, Diffie-

Hellman and elliptic-curve cryptography (ECC) [4].

Recently, a 128-bits block cipher called ARIA [6] is proposed. The ARIA is a symmetric-key

cryptography algorithm and includes an involutional substitution and permutation encryption network

(SPN) which is not totally involutional. Also, the ARIA contains a diffusion layer to resist against

powerful attacks such as collision attacks, partial sum attacks and truncated differential attacks [6].

Manuscript Received: xxxxxx / Revised: xxxxxx / Accepted: xxxxxx

Corresponding Author: wanlee@dongduk.ac.kr

Tel:, +82-2-940-4685 Fax: +82-2-940-4170

Dept. of Computer Science, Dongduk Women’s University, Seoul 136-714, South Korea

IJIBC 16-1-6

Manuscript Received: Dec. 7, 2015 / Revised: Dec. 23, 2015/ Accepted: Jan. 8, 2016

Corresponding Author: wanlee@dongduk.ac.kr

Tel:, +82-2-940-4685 Fax: +82-2-940-4170

Dept. of Computer Science, Dongduk Women’s University, Seoul 136-714, South Korea

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors 43

The original design of ARIA algorithm has many 8-bits computations and thus suitable for 8-bits

processors. Another design is given to be suitable for 32-bits processors [7]. However, there is no

design suitable for 16-bits processors although 16-bits processors are widely employed by many

embedded systems [8,9].

The proposed design optimizes the execution speed of the ARIA algorithm for embedded systems

with 16-bits processors. The ARIA algorithm consists of three parts: round key addition, substitution

layer, and diffusion layer. The proposed design first modifies the diffusion layer so as to reduce the

number of XOR operations requested for the chained matrix multiplication calculation of the diffusion

layer. Our design applies 16-bits XOR operation instead of 8-bits XOR operations. This modification

of the diffusion layer requires 16-bits extensions of 8-bits array variables used in the substitution layer.

The proposed design extends 8-bits array variables into 16-bits array variable for faster matrix

multiplication calculation of the diffusion layer. Also, the proposed design employs 16-bits XOR

operations and rotated shift operations as many as possible using the extended 16-bits array variables.

In experiments with ATmega2560 micro-controllers, yields about 20% faster execution speed and

about 28% smaller size (footprint) of translated machine code than the 32-bits optimized code.

Compared to the 8-bits optimized code, our code yields about 91% faster execution speed with a

larger space requirement.

The rest of this paper is organized as follows; Section 2 explains the outline of the original ARIA

algorithm. Section 3 describes the proposed design in detail. Section 4 shows evaluation results of the

proposed design. Section 5 provides concluding remarks.

2. Outline of ARIA Algorithm

The ARIA algorithm consists of three parts: round key addition, substitution layer, and diffusion

layer. The round key addition part performs XOR operations of the 128-bit round key. The XOR

operation is denoted as . The substitution layer part replaces inputs with their position-

corresponding values in two types of S-Boxes (S1, S2) and their inverses (S1
-1

, S2
-1

). The pre-calculated

values of S1, S2, S1
-1

, and S2
-1

 are stored in constant array variables, as shown in Figure 1 and Figure 2.

For example, S1(0x01)=0x7c, S2(0x02)=0x54, S1
-1

 (0xf0)=0x17, and S2
-1

(0xf1)=0x8a.

Figure 1. Values of S-box S1 and S1
-1

44 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

Figure 2. Values of S-box S2 and S2
-1

There are two types of S-box layers as shown in Figure 3. Type 1 is used in odd rounds and type 2

is used in even rounds.

Figure 3. Two Types of S-box Layers

The diffusion layer generates an output vector (y0, …, y15) with an input vector of (x0, …, x15),

where

The diffusion layer can be expressed with an equivalent matrix multiplication as shown in Figure 4.

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors 45

Figure 4. Matrix Multiplication for the Diffusion Layer

The encryption and decryption processes of an n-round ARIA are shown in Figure 5, when n is 10,

12 and 14 for 128-bit, 192-bit and 256-bit secret keys, respectively. The encryption and decryption

processes are identical except in the use of round keys, eki.

Figure 5. Encryption and Decryption Processes

46 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

The round keys, eki, are generated according to the following operation, where “<<< n” denotes the

left circular rotation by n bits and “>>> n” denotes the right circular rotation by n bits. Four 128-bits

values W1, W2, W3 and W4 are generated from the mater key by using 3-round 256-bits Feistel cipher

[3].

Figure 6. Calculation for the Round Key Generation

3. Proposed Design

The proposed method modifies the diffusion layer design of the 32-bits optimized method [3] so as

to work with 16-bits computations as follows; The matrix multiplication of the diffusion shown in

Figure 4 can be reformulated with a matrix form A = M1
-1 M2 M1, where M2 is a 1616 involutional

block diagonal matrix and M1 is a 1616 involutional matrix (i.e., M1
-1

=M1). The matrix M2 has a form

M2= P M.

 (

), (

) , (

)

 (

), (

),

 (

), (

)

When S denotes the S-box substitution, the one round except for key addition can be written as A S

= M1
-1M2 M1 S= M1M2 M1 S [3]. Because the form M1 S is not implemented efficiently by 832

table lookups, the formulation of the diffusion layer is modified as follows:

A S = M1
 M2 M1 S = M1 P M M1 S = M1

 P M M1 M M S

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors 47

= M1 P M M M1 M S = M1 P M1 M S.

Then M S can be expressed respectively for odd rounds and even rounds as follows:

(

)

where S in odd rounds is

S = [S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

]
T

and S in even rounds is

S = [S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2]
T
.

Let us check the left-upper quarter part of the above M S calculation with S = [S1, S2, S1
-1

, S2
-1

, S1,

S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

, S1, S2, S1
-1

, S2
-1

]
T
. This part performs 24 XOR operations of 8-bits values

such as S1, S2, S1
-1

, and S2
-1

 as below:

(

)

(

)

 =

(

)

For optimized operation of 16-bits processors, the above equation can be reformulated with 16-bits

values such as 0x00S1, 0xS200, 0xS1
-1

S1
-1

, 0xS2
-1

S2
-1

, 0xS1S1, 0xS2S2, 0x00S1
-1

, and 0xS2
-1

00 as below:

48 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

=

(

[

]

 [

]

 [

]

 [

]

[

]

 [

]

 [

]

 [

]

[

]

 [

]

 [

]

 [

]

[

]

 [

]

 [

]

 [

]

)

The above formulation performs 12 XOR operations of 16-bits values, whereas the original

formulation performs 24 XOR operations of 8-bits values. As results, the modified formulation

enhances the processing speed of 16-bits processors. On the contrary, the modified formulation

requires the 16-bits extension of 8-bits values: for example, 0xS1 0x00S1 and 0xS1 0xS1S1. For

faster operation, the 16-bits extensions (such as 0x00S1, 0xS200, 0xS1
-1

S1
-1

, 0xS2
-1

S2
-1

, 0xS1S1, 0xS2S2,

0x00S1
-1

, and 0xS2
-1

00) are pre-calculated and stored in array variables. For example,

0x00S1(0x01)=0x007c, 0xS2S2(0x02)=0x5454, 0x00S1
-1

(0xf0)=0x0017, and 0xS2
-1

S2
-1

(0xf1)=0x8a8a.

Figure 7. Codes for Matrix Operation P M1 M before Modification

The modified formulation requires the matrix operation A S = M1 P M1 M S to be modified to

calculate with the 16-bits extended values. Figure 7 shows the code before the modification. The

matrix operation M is denoted with a macro code, SBL1_M(T0, T1, T2, T3), where T0, T1, T2 and T3 are 32-

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors 49

bits variables. The matrix operations M1 is denoted with a macro code, MM(T0, T1, T2, T3), and the matrix

operation P is denoted with a macro code, P(T0, T1, T2, T3).

Figure 8 shows the code after the modification, where t0, t1, t2 and t3 are the pointer of 16-bit array

variables t0[2], t1[2], t2[2] and t3[2]. In the modified codes, __t[2] is a temporary 16 -bit array variable.

Figure 8. Codes for Matrix Operation P M1 M after Modification

Also the modified formulation requires the round key generation process, shown in Figure 6, to be

modified to calculate with the 16-bits extended values. Figure 9 shows the circular rotation code after

the modification, and Figure 10 shows the circular rotation code after the modification.

50 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

Figure 9. Code for Round Key Generation before Modification

Figure 10. Code for Round Key Generation after Modification

4. Evaluation

We compare the proposed 16-bits optimized code with open source codes optimized for 32-bits

processors and 8-bits processors. The 32-bits optimized code and 8-bits optimized code are distributed

by KISA [10]. The three codes are compiled with the AVR compiler and translated into executable

machine codes. The translated machine codes are applied to Atmel ATmega2560 micro-controllers.

Table 1 shows the execution time of the three codes. When encrypting a 128-bits block message, each

code requires both encryption key setup procedure and encryption procedure. When decrypting a 128-

bit encrypted block message, each code requires both decryption key setup procedure and decryption

procedure. Compare to the 32-bits optimized code, the proposed 16-bits optimized code enhance the

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors 51

execution speed by about 20%. Also, compared to the 8-bits optimized code, the proposed code

enhances the execution speed by 91%.

Table 1. Execution Speed of Three Codes

32-bits Optimized

Code

8-bits Optimized

Code

16-bits Optimized

Code

Encryption Key Setup Exec.

Time
864 µsec. 14,252 µsec. 480 µsec.

Encryption

Exec. Time
532 µsec. 828 µsec. 600 µsec.

Decryption Key Setup Exec.

Time
1,264 µsec. 14,768 µsec. 860 µsec.

Decryption

Exec. Time
532 µsec. 816 µsec. 600 µsec.

Total Exec. Time 3,192 µsec. 30,664 µsec. 2,540 µsec.

Table 2 shows the space requirements of the three codes. Compare to the 32-bits optimized code,

the proposed 16-bits optimized code reduces the translated machine code size (footprint) by about

28%. The memory usages of two codes are equal. Compare to the 8-bits optimized code, the proposed

code requires a larger machine code size and memory usage. However, our 16-bits optimized code is

faster than the 8-bits by more than 10 times. Consequently, our 16-bits optimized code is the best

choice for systems with fast speedup requirements and the 8-bits optimized code is the best choice for

systems with small memory usage requirements.

Table 2. Space Requirements of Three Codes

 32-bits Optimized Code 8-bits Optimized Code
16-bits Optimized

Code

Machine Code Size 31,094 bytes 6,518 bytes 22,366 bytes

Memory Usage 4,458 bytes 1,386 bytes 4,458 bytes

5. Conclusions

The proposed design optimizes the execution speed of the 128-bits block cipher ARIA for 16-bits

processors, whereas the previous studies handled only the 32-bits optimization and the 8-bits

optimization of the ARIA algorithm. The proposed design extends 8-bits array variables into 16-bits

array variables for faster chained matrix multiplication. Also, the proposed design adopts 16 -bits XOR

operations and rotated shift operations as many as possible. In evaluation experiments, our 16-bits

optimized code yields about 20% faster execution speed and about 28% smaller footprint, compared to

52 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 42-52 (2016)

the 32-bits optimized code. Compared to the 8-bits optimized code, our code yields about 91% faster

execution speed with a larger space requirement.

Acknowledgements

This research was supported by the Dongduk Women’s University Grant, 2015.

References

[1] M. Ebrahim, S. Khan and U. B. Khalid, “Symmetric Algorithm Survey: A Comparative Analysis,”

International Journal of Computer Applications (Jan. 2013), vol. 61, no. 20, pp. 12-19.

[2] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann and L. Uhsadel, “A Survey of Lightweight-

Cryptography Implementations,” IEEE Design & Test of Computers (Nov.-Dec. 2007), vol. 24, no. 6,

pp. 522-533.

[3] S. B. Sasi and N. Sivan, “A Survey on Cryptography Using Optimization Algorithms in WSNs,” Indian

Journal of Science and Technology (Feb. 2015), vol. 8, no. 3, pp. 216-221.

[4] William Stalling, Cryptography and Network Security: Principles and Practices, 6
th
 edition, Prentice

Hall, (2013).

[5] National Institute of Standards and Technology (NIST), “Advanced Encryption Standards (AES),”

Federal Information Processing Standards Publication 197 (Nov. 2001), pp. 1-26.

[6] KS X 1213:2004, “128 bit Block Encryption Algorithm ARIA,” Korean Agency for Technology and

Standards (Dec. 2004).

[7] D. Kwon, J. Kim, S. Park, S. H. Sung, Y. Sohn, J. W. Song, Y. Yeom, E. Yoon, S. Lee, J. Lee, S. Chee,

D. Han and J. Hong, “New Block Cipher: ARIA,” International Conference on Information Security and

Cryptology (Nov. 2003), Lecture Notes in Computer Science 2971, pp. 432-445.

[8] H. I. Kim, C. Park, D. Hong, and C. Seo, “A LEA Implementation Study on UICC-16bit”, Journal of The

Korea Institute of Information Security & Cryptology (Aug. 2004), vol. 24, no. 4, pp. 585-591.

[9] Y. W. Law, J. Doumen and P. Hartel, “Survey and Benchmark of Block Cipher for Wireless Sensor

Networks,” ACM Transactions on Sensor Networks (Feb. 2006), vol. 2, no. 1, pp. 65-93.

[10] Korea Internet & Security Agency (KISA), Available at http://seed.kisa.or.kr/iwt/ko/bbs/

EgovReferenceDetail.do?bbsId=BBSMSTR_000000000002&nttId=39&pageIndex=1&searchCnd=&sea

rchWrd=

