
International Journal of Internet, Broadcasting and Communication Vol.8 No.1 33-41 (2016)

http://dx.doi.org/10.7236/IJIBC2016.8.1.33

An Efficient Log Data Processing Architecture for Internet Cloud Environments

Julie Kim
1
, Hyokyung Bahn

1*

1
Dept. of Computer Science and Engineering, Ewha University, Seoul, 120-750, Korea

kjulee114@gmail.com, bahn@ewha.ac.kr
*

Abstract

Big data management is becoming an increasingly important issue in both industry and academia of

information science community today. One of the important categories of big data generated from software

systems is log data. Log data is generally used for better services in various service providers and can also be

used to improve system reliability. In this paper, we propose a novel big data management architecture

specialized for log data. The proposed architecture provides a scalable log management system that consists of

client and server side modules for efficient handling of log data. To support large and simultaneous log data

from multiple clients, we adopt the Hadoop infrastructure in the server-side file system for storing and

managing log data efficiently. We implement the proposed architecture to support various client environments

and validate the efficiency through measurement studies. The results show that the proposed architecture

performs better than the existing logging architecture by 42.8% on average. All components of the proposed

architecture are implemented based on open source software and the developed prototypes are now publicly

available.

Keywords: big data; log data; message queue; Internet cloud

1. Introduction

Due to the recent shift of computing paradigm to Internet cloud, “Big Data” is becoming increasingly

catching interest in both industry and academia realms. As the stored data volume becomes exponentially

large with digital technologies, efficient management of big data is essential to improve the quality of service

and also to provide appropriate information to both end users and system administrators. Among various

categories of big data, log data is one of the important big data generated essentially from software systems

that should be well managed to provide services efficiently. Furthermore, it also provides significant

information to software developers in debugging or finding failure points. Computation resources or

infrastructures dealing with log data are also becoming increasingly important issues. In existing computing

environments, log data are occasionally used at particular situations. For example, they are used when the

system failure occurs or users explicitly investigate information for specific purposes. As its name implies,

log data itself does not have the functionality of producing useful information directly due to its large volume

that cannot be managed efficiently with legacy infrastructures.

As the computing paradigm shifts to mobile cloud computing, the network traffic of software itself as well

as its data increases rapidly in client-server architectures [19-22]. Particularly, as clients and servers

communicate in a synchronous way, the performance degradation becomes significantly large. Log messages

account for a large portion of the network traffic as they are generated very frequently, becoming potential

IJIBC 16-1-5

Manuscript Received: Nov. 25, 2015/ Revised: Dec. 15, 2015/ Accepted: Dec. 29, 2015

Corresponding Author: bahn@ewha.ac.kr

Tel: +82 2 3277-2368, Fax: +82 2 3277-2306.

Dept. of Computer Science and Engineering, Ewha University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750, Korea.

34 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 33-41 (2016)

sources of the performance degradation.

Meanwhile, a lot of systems adopt relational databases to manage data storage and SQL is used for query

processing. This infrastructure performs well in traditional systems where number of clients and data to be

managed are limited. However, as the amount of data and the number of requests from clients are growing

sharply, storage becomes the bottleneck of the traditional data processing systems. The latency perceived by

clients increases dramatically, which cannot be endured any longer. To relieve this problem, a scalable

infrastructure such as distributed file systems is needed as an alternative of legacy structures.

In this paper, we propose LogStore, a scalable log management system that consists of client and server

side modules for efficient handling of log messages and aggregating them. The architecture handles large log

messages from clients asynchronously and collects them through multiple message queues; then, it finally

stores log data to the distributed file system in the servers. To support large and simultaneous log data from

multiple clients, we adopt the Hadoop infrastructure in the server-side file system for storing and managing

log data [2, 3]. This architecture handles log messages from clients asynchronously and saves them into

Hadoop Distributed File System.

 We design the proposed architecture in CentOS 5.5 and develop sample client applications to support

HDFS (Hadoop Distributed File System) with Eclipse RCP (3.0v, Indigo). The applications at client-side

produce log messages concurrently and send them to the server. Finally, LogStore displays them with the

saved log files.

The remainder of this paper is organized as follows. Section 2 describes how LogStore sends log messages

to a message queue in the server. Section 3 discusses the Hadoop infrastructure used to support the proposed

architecture. In Section 4, we describe the implementation details of LogStore. Section 5 validates the

feasibility of the architecture through measurement studies. Finally, we conclude this paper in Section 6 with

discussing some future work.

2. Basic Architecture of LogStore

The basic architecture of our LogStore is depicted in Figure 1. Each application in the client-side

generates log data and sends them to the message queue in the server through various paths and ports.

Message queues provide asynchronous processing of each log message. Particularly, they do not have any

effect on client states and work independently to each other. Paths and ports between message queues and

clients can be configured by logging systems on the clients and message queues on the server. Server

applications store log data in HDFS after proper handling. Specifically, a server application dequeues log

messages from one of the message queues, and transfers them to the distributed file system to append or

write to appropriate files. We use the HDFS as the file system of the proposed architecture. Details of the

processing will be discussed in Section 3.

In our architecture, gathering and handling log messages is not related to client-sides as it is performed by

server applications. Specifically, log message processing in the client-side does not degrade the performance

of the client. This is because servers receive messages and handle them independently to client status.

Message queues enable the stateless handling of log messages for both servers and clients. In the server, a

message queue daemon and a server application dealing with log data are independent processes. This

Figure 1 A basic architecture of LogStore.

An Efficient Log Data Processing Architecture for Internet Cloud Environments 35

separation provides some advantages in managing the overall system. For example, clients send log

messages to a message queue although a server application may be in failure as sending log messages

depends on the message queue daemon, not the state of the server application. Also, processing log messages

is up to server applications, not message queues. The proposed architecture provides scalability in appending

clients, message queues, and server applications. Moreover, it improves the availability of systems by

enhancing the failover function as checking each layer is separated.

3. Store Log Data with Hadoop Infrastructures

Huge amount of log data should be managed efficiently while storing and processing not to influence the

performance of other system components. In transaction-based database systems, large data delays the

response time of query processing seriously. To relieve this problem, storing massive data in distributed

storage and processing them in parallel is required. Hadoop is one of the efficient infrastructures that satisfies

these requirements in distributed systems [2]. Hadoop is efficiently designed for sequential writes,

contiguous appends, and a lot of reads, which fit well for the characteristics of log data. In the Hadoop

distributed file system (HDFS), a large file is split into the same size chunks, and then stored to multiple

HDFS nodes redundantly. Chunks are distributed to multiple nodes considering network topologies and load

of each node. In this architecture, read requests for large files can be handled efficiently through concurrent

reads from multiple HDFS nodes. Although some nodes fail during file operations, it can provide the failover

capability by using alternative replicated chunks stored in other HDFS nodes. Our LogStore provides

efficient data processing and fault tolerance by using Hadoop as a base infrastructure.

LogStore consists of four layers: a client application that generates log data, a message queue system that

relays log data between clients and servers, a server application that handles delivered messages with file

API, and HDFS that actually stores log data. Figure 2 shows each layer of LogStore. A log message

generated from the client application is delivered to the message queue and processed by an appropriate

server application. A server application handles the message and stores in the distributed file system based

on Hadoop.

One of the important requirements in big data management is the fast extraction of meaningful

information from stored data. This can be realized in the proposed LogStore as Hadoop supports the

MapReduce programming model [9], which performs map and reduce operations repeatedly with (Key,

Value) pairs. The results can be obtained promptly as each MapReduce operation is performed

simultaneously on different processors. In addition, Hadoop eco-systems provide a lot of convenient tools

like Pig [13] and Hive [4] to handle big data.

4. Implementations

In this section, we discuss the implementation details of LogStore. All components of LogStore are

implemented with open-source softwares, and the source code and binary of our projects are also publicly

available on Github [6].

Client modules are developed by Eclipse RCP (Rich Client Platform) and libraries with Java. An Eclipse

RCP application in the client generates log messages and the client logging system sends them to the server

message queue. The client logging system is organized with a logging framework in Java, Slf4j and Log4j.

Figure 2 A detailed architecture of LogStore using Hadoop.

36 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 33-41 (2016)

Slf4j consolidates log messages from various logging frameworks like commons-logging. Log4j formats

messages and prepares to send them to the message queue. To implement a message queue in the server, we

use RabbitMQ. Usually, message passing is performed by JMS (Java Message Service) in Eclipse RCP

because it is built in Java and supports java applications efficiently. However, as JMS supports only

homogeneous architectures, both publishers and subscribers should be supported by Java. To provide more

general frameworks for heterogeneous client-server architectures, we use AMQP (Advanced Message

Queuing Protocol) instead of JMS. RabbitMQ is the representative messaging software that supports AMQP

and it also exhibits good performance as it is implemented by the Erlang language. Server applications are

developed by the Flume node instance that connects message queues and HDFS. By using server

applications, log messages are dequeued from the message queue and then stored into HDFS by file rolling.

Table 1 and Figure 3 show the outline of each layer. We consider two kinds of implementations. The first

sends log messages through client file systems while the second sends them directly to the server message

queue without passing through the client file systems.

Table 1. Mapping of Architecture Layers and Software.

Client Logging System Log4j with SLF4j

Message Queue RabbitMQ

Server Application Flume

Distributed File System HDFS

4.1 File Tailing Architecture

In the legacy architecture, applications store log data to their local file systems. Although it needs more

file I/Os, we initially use the file tailing architecture that makes use of the legacy logging system. Our file

tailing architecture retrieves log data from local file systems and sends to the server message queue. This

implementation needs an additional Flume node instance running on the client machine. Specifically, log

messages generated by client applications are appended to the log file in the local file system, and the Flume

node instance in the client machine performs the tailing of the log file. Then the generated messages are sent

to the message queue in the server. Communications between Flume and RabbitMQ are performed by

AMQP [10]. At the same time, a Flume node instance in the server machine dequeues data from the message

queue and sends them to HDFS. Figure 4 shows the file tailing architecture of LogStore. Note that this

supports multiple client applications with a configured logging system. If some clients are added, our logging

system can send their log data to another added message queues to support scalability. Flume sink nodes are

also appended to communicate with new message queues.

This basic architecture is then extended to large scale file tailing architectures as shown in Figure 5. It

supports scalability by adding new message queues or Flume sink nodes to save log data to HDFS.

Figure 3 Concrete Composition of the LogStore Architecture.

An Efficient Log Data Processing Architecture for Internet Cloud Environments 37

4.2 Log Appender Architecture

In the file tailing architecture, log messages are sent to the server via client local file systems. It needs

additional write and read operations on the local file system and may degrade the performance of client

systems. To relieve this problem, we develop a log appender of Log4j and AMQPAppender that does not

store log data to local file systems but sends them directly to message queues. Paths or ports between servers

and clients are configured by the same way of general logging frameworks. AMQPAppender is responsible

for formatting and sending log messages to the message queue in the server. After sending messages, the

message queue system in the server-side enqueues the log messages to a specific queue matched with the

setup of AMQPAppender. Then, a Flume node instance in the server machine dequeues messages from the

message queue that it needs to deal with and saves in HDFS. Messages are saved with file rolling

periodically.

Figure 6 shows the architecture with the client-side log appender. Unlike the architecture shown in Figure

5, Flume nodes do not exist at client machines. Instead, a logging system in the client application sends log

messages directly to message queues through Advance Message Queue Protocol. The Flume agent plays the

role of the server application that dequeues log data from the message queue and saves them into HDFS.

Figure 7 depicts how LogStore can build scalable architectures with AMQPAppender and Flume agent

applications. As shown in the figure, Flume agents running on the servers are mapped to server applications.

Specifically, it consists of two Flume nodes that are sink and source processes [1].

4.3 AMQPAppender for log4j

In LogStore, client applications do not need to know how log messages are handled in the logging system.

Figure 4 File Tailing Architecture of LogStore.

Figure 5 Large Scale of File Tailing Architecture

38 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 33-41 (2016)

The application creates a logger from LoggerFactory of Slf4j and just publishes. Handling process is up to

LogAppender of Log4j [11]. Though appenders supported by JMS (Java Message Service) already exist,

they do not support heterogeneous jobs between clients and servers, and applications should be based on

Java. Also, appenders of Log4j do not support AMQP yet. For this reason, we developed AMQPAppender

supporting message queues with AMQP. Accordingly, when a log message is published, AMQPAppender

sends it to the configured message queue via AMQP. The paths and ports can be changed with Log4j

configurations.

5. Performance Evaluations

To assess the effectiveness of LogStore, we perform measurements with various client configurations. We

implement client applications that generate log data to emulate various logging configurations. Our client

applications show the current status of HDFS, and users can create, retrieve, and delete log files. Figure 8

shows the screenshot of Eclipse RCP client applications. It also shows metadata such as owner, permission,

size, and created date of a file, and the retrieved contents of it by downloading. Console view below the file

list displays the log messages generated during the execution of the application. All of the logs shown are

sent to the message queue by the client logging system.

We measure the client performance with different logging architectures. Figure 9 compares the overhead

of logging in terms of the application execution time. In the figure, No-logging represents the execution time

when the system does not perform logging. Note that the execution time of other logging systems is

displayed relative to that of No-logging. LogStore represents the proposed logging system that uses

server-side message queues and Local logging represents the architecture that stores log data at local file

systems. As shown in the figure, logging in the local file system incurs large overhead. Specifically, it takes

18 times longer latency than No-logging. This implies that logging is a serious performance bottleneck and

optimization of logging performance is an important issue in modern software design.

There have been some attempts to relieve this problem. For example, SCM (Storage Class Memory) is

adopted to perform logging more efficiently in DBMS [18]. However, it needs additional resources and

Figure 6 Log Appender Architecture of LogStore.

Figure 7 Large Scale of Log Appender Architecture

An Efficient Log Data Processing Architecture for Internet Cloud Environments 39

cannot be implemented directly to conventional computing environments. Thus, we aim to relieve it through

software solutions. As shown in the figure, our LogStore does not degrade the client performance seriously

compared to the legacy logging performed on local file systems by handling log data asynchronously through

the message queue.

Figure 10 compares the throughput of different logging systems. Specifically, the number of logs handled

per second is compared for the two logging architectures. As shown in the figure, using message queue

performs better than local file logging significantly. Specifically, local file logging incurs serious

performance degradation to client applications as the number of log messages increases. Also, it shows that

LogStore with message queue relieves the overhead of logging and clients can send more log messages

within a given time.

6. Conclusions

In this paper, we proposed a novel logging architecture with message queues and Hadoop infrastructure

called LogStore. LogStore provides efficient and scalable log management systems for various client and

server configurations. All software modules of LogStore are implemented with open source projects that can

be adopted in each layer of the architecture. As Hadoop architecture is still in its evolution [7, 17], we can

expect that our LogStore can be enhanced even more. We may also improve the performance of LogStore by

analyzing the overhead of each layer, and then reconstruct some layers with new software components [8].

Figure 8 Eclipse RCP Client Application Screen shot of LogStore.

Figure 9 Overhead of logging

40 International Journal of Internet, Broadcasting and Communication Vol.8 No.1 33-41 (2016)

Another important aspect to consider is that the architecture can be enhanced if it supports event-driven

processing. Event-driven processing is a new service area offering more appropriate information to users [12,

16]. The proposed architecture can be extended to support it in server applications. As a part of our future

work, we will measure and compare the performance of our prototype implementations quantitatively [15]. It

includes a new prototype architecture and various compositions of layers. Moreover, we plan to optimize

software modules suitable for our architecture. We will also explore the advanced EDA (Event-Driven

Architecture) fit for a large-scale distributed system. The proposed architecture has a potential for large

distributed architectures applied to event-based processes, which have a lot of challenging issues.

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MEST) (No.2011-0028825). Hyokyung Bahn is the corresponding author of this paper.

References

[1] Apache Flume, http://flume.apache.org/

[2] S. Ghemawat, H. Gobioff, S. Leung, “The Google file system,” Proceedings of ACM Symposium on

Operating Systems Principles (SOSP), Bolton Landing, NY, pp.29–43, 2003.

[3] Hadoop infrastructure, http://hadoop.apache.org/

[4] Hive, http://www.hive.apache.org

[5] Gartner, The future of the Internet. http://www.gartner.com/technology/research/future-of-the-internet/

[6] H-navi, https://github.com/julnamoo/h-navi

[7] J. Horey, E. Begoli, R. Gunasekaran, S.H. Lim, J. Nutaro, “Big data platforms as a service: challenges

and approach,” Proceedings of the USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),

Boston, MA, 2012.

[8] J.P. Lozi, F. David, G. Thomas, J. Lawall, G. Muller, “Remote core locking: migrating critical-section

execution to improve the performance of multithreaded applications,” Proceedings of the USENIX

Annual Technical Conference (ATC), Boston, MA, 2012.

[9] J. Zhao, J. Pjesivac-Grbovic, “MapReduce: the programming model and practice,” Tutorials of the ACM

SIGMETRICS Conference, Seattle, Washington, 2009.

Figure 10 A Sample Performance result of LogStore

An Efficient Log Data Processing Architecture for Internet Cloud Environments 41

[10] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing, vol. 10, no. 6, pp. 87–

89, 2006.

[11] Log4j, http://logging.apache.org

[12] M. Migliavacca, I. Papagiannis, D.M. Eyers, B. Shand, J. Bacon, P. Pietzuch, “DEFCON:

high-performance event processing with information security,” Proceedings of the USENIX Annual

Technical Conference (ATC), Boston, MA, 2010.

[13] Pig, http://www.pig.apache.org

[14] RabbitMQ, http://www.rabbitmq.com/

[15] S. Appel, K. Sachs, A. Buchmann, “Towards benchmarking of AMQP,” Proceedings of the ACM

International Conference on Distributed Event-Based Systems (DEBS), pp.99–100, 2010.

[16] T. Steiner, R. Verborgh, R. Walle, M. Hausenblas, J. Gabarró Vallés, “Crowdsourcing event detection

in YouTube videos,” Proceedings of the Workshop on Detection, Representation, and Exploitation of

Events in the Semantic Web (DeRiVE), 2011.

[17] X. Ye, M. Huang, D. Zhu, P. Xu, “A novel blocks placement strategy for Hadoop,” Proceedings of the

International Conference on Information Systems (ICIS), pp. 3–7, 2012.

[18] R. Fang, H. Hsiao, B. He, C. Mohan, Y. Wang, “High performance database logging using storage class

memory,” Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2011.

[19] B.P. Rimal, E. Choi, “A service-oriented taxonomical spectrum, cloudy challenges and opportunities of

cloud computing,” International Journal of Communication Systems, vol. 25, no. 6, pp. 796–819, 2012.

[20] Y. Lai, C. Lai, C. Hu, H. Chao, Y. Huang, “A personalized mobile IPTV system with seamless video

reconstruction algorithm in cloud networks,” International Journal of Communication Systems, vol. 24,

no. 10, pp. 1375–1387, 2011.

[21] I. Hsu, “Multilayer context cloud framework for mobile Web 2.0: a proposed infrastructure,”

International Journal of Communication Systems, 2011; DOI: 10.1002/dac.1365.

[22] Y. Liu, Z. Chen, X. Lv, F. Han, “Multiple layer design for mass data transmission against channel

congestion in IoT,” International Journal of Communication Systems, 2012: DOI: 10.1002/dac.2399.

