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Abstract 

Recently, as the price per bit is decreasing at a fast rate, flash memory is considered to be used as primary 

storage of large-scale database systems. Although flash memory shows off its high speeds of page reads, 

however, it has a problem of noticeable performance degradation in the presence of increasing update 

workloads. When updates are requested for pages with random page IDs, in particular, the shortcoming of 

flash tends to impair significantly the overall performance of a flash-based database system. Therefore, it is 

important to have a way to efficiently update the B+-tree, when it is stored in flash storage. This is because 

most of updates in the B+-tree arise at leaf nodes, whose page IDs are in random. In this light, we propose a 

new flash B+-tree that stores up-to-date versions of leaf nodes in sibling-leaf blocks (SLBs), while updating 

them. The use of SLBs improves the update performance of B-trees and provides the mechanism for fast key 

range searches. To verify the performance advantages of the proposed flash B+-tree, we developed a 

mathematical performance evaluation model that is suited for assessing B-tree operations. The performance 

comparisons from it show that the proposed flash B+-tree provides faster range searches and reduces more 

than 50% of update costs.    
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1. Introduction 

During the past decades, we have seen drastic advances in the technology of digital storage devices. 

Especially, the NAND-type flash memory has drawn much attention because of its performance advantages 

over the traditional hard disk drives (HDDs) [1, 4]. Since flash memory has many desirable features such as 

robust shock resistance and low power consumption, it has superseded HDDs in the case of low-end 

computing devices such as laptops and smart phones [2]. Recently, as the price per bit is decreasing at a fast 

rate, there is a growing demand for high-end flash-based DBMSs that capitalizes on very fast speeds of 

random reads in flash [1]. In this context, much research has been done to develop flash-aware B+-tree 

algorithms that are suitable for flash storage [3, 5, 7- 9, 11-16].  
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Because the B-tree index was originally invented for its use in HDD storage, the B-tree index may suffer 

from performance degradations because of any unique I/O feature of flash memory, if it is used for flash 

storage [7, 11, 13]. As matter of fact, the absence of in-place-update in flash memory is a distinct I/O feature, 

which is not found in the traditional HDD storage. If bit cells in a page P are electronically charged for 

writing data on P, then they should be cleaned before page P is updated with new data. In flash storage, such 

cleaning (or erasing) operation is performed in the unit of a flash block, which is comprised of 32 or 64 

pages. The different units of data writing and before-write cleaning significantly increase the I/O cost for 

in-place updating of pages [9, 13, 14]. For that reason, in-place-update of a page is not usual in flash storage. 

Instead, flash storage utilizes a special-purpose firmware, called the FTL (Flash Translation Layer).  

The FTL is responsible for doing hidden actions for out-of-place updates and garbage collection to 

reclaim invalidated data pages [1, 11]. Although there have been many efforts to develop efficient FTL 

algorithms that work against frequent updates, it has been reported that updates on random pages inevitably 

hurt the I/O throughput of flash-based storage because of a number of the occurrences of full merges [11-14]. 

When it comes to the update patterns in a B+-tree, most of them seem to arise on leaf nodes. Note that other 

type nodes, i.e., internal nodes, are updated only when tree reconstruction is executed for handling the 

overflow or underflow of leaf nodes. Since a populated B+-tree has many leaf nodes scattered widely across 

storage space, update operations in the B+-tree usually entail random page updates. Therefore, a B+-tree 

with frequent update operations tends to impair storage performance because of I/O overheads of full 

merging in the FTL. 

To avoid the excessive full-merge overheads, our B+-tree groups the leaf nodes according to their parent 

nodes and stores the same group of leaf nodes in a block, called the sibling-leaf block (SLB). If a leaf node N 

in SLB S needs updating, then N’s new version is saved in S, along with its original version. Since the page 

address of N is changed due to its update, we also need to update the parent of N to reflect N’ new address in 

that parent node. That second update gives rise to the third another update on the grand parent of N. As a 

result, the updates recursively go upward to the root node, thereby increasing B+-tree update costs 

significantly [7, 12].   

To prevent the cascading updates along a B+-tree path, we do not store physically the nodes at the leaf’s 

parent level. Instead, that level’s node is generated based on the index entries saved in its child (leaf) nodes. 

Since the leaf nodes with the same parent exist in the same SLB, the I/O cost for reading them is not 

expensive. Since the DBMS can cache the virtual nodes in the buffer pool, moreover, the actual overhead for 

the use of virtual nodes seems to be negligible. For that reason, our B+-tree can offset the overhead for 

generating virtual nodes by reducing I/O costs paid for updating leaf nodes. To verify the performance 

advantages of the proposed flash B+-tree, we performs performance evaluations based on a mathematical 

cost model. From the evaluation results, we can see that the proposed B+-tree provides fast range search 

speeds as well as low update costs.  

This paper is organized as follows. In Section 2, we introduce the problem of garbage collection and 

address the earlier algorithms for the flash B+-tree. We propose a new flash B+-tree scheme in Section 3, 

and evaluate its performance in Section 4. Lastly, we conclude this paper in Section 5.  

 

2. Backgrounds  

2.1 Garbage Collection 

Since a page cannot be overwritten in flash memory, the page should be electronically cleaned before it is 

updated in place. The smallest granularity of such cleaning is a block and the block is composed of 32 or 64 



14                           International Journal of Internet, Broadcasting and Communication Vol.8 No.3 12-24 (2016) 
 

pages. Because of such H/W features of flash memory, the cost for an in-place-update of a page is 

prohibitively high [18-20]. For this reason, an update request in flash storage is handled through an 

out-of-place update. To hide the rather complex mechanism of out-of-place updates, a firmware of the FTL 

(Flash Translation Table) is employed [1, 3, 5].  

When the out-of-place updates consume almost all of the clean pages in flash storage, the FTL initiates 

actions for garbage collection so as to reclaim clean pages. Since I/O overheads for garbage collection deeply 

impact the performance of flash storages, many research has been done for supporting efficient garbage 

collection in the FTL [5]. The FTL algorithms for garbage collection can be classified according to the ways 

how the FTL manages its mapping information between the logical addresses and physical addresses of data 

pages. That is, the FTL algorithms are classified into the block-level FTL, the page-level FTL, and the hybrid 

FTL.  

Among them, the garbage collection algorithms of the hybrid FTL are popularly accepted for its 

efficiency using a small size of an SDRAM buffer [10, 12]. In those algorithms, a small portion of flash 

blocks are managed through a page-level mapping scheme and the pages in those blocks are consumed to 

accommodate out-of-place updates on data pages. We refer to such special-purpose blocks as the log blocks. 

When the log blocks are exhausted because of frequent updates, the garbage collection actions are executed 

to obtain the clean log blocks again.  

During the garbage collection action, the FTL inspects the existence of any log block that can replace 

other dirty data block. If such a block matching is detected, then the log block and the matched data block 

are switched to each other. At the same time, the data block is cleaned as a new log block. This type of 

garbage collection is called the switch merge. On the other hand, if a log block to be cleaned contains many 

pages having their original versions in different data blocks, a full merge is executed over multiple flash 

blocks.  

Since a single full merge requires cleaning of more than three blocks and a large number of page copies, 

its overhead is quite larger than the switch merge. For this reason, the primary goal of garbage collection 

algorithms is to reduce the amount of full-merges. However, in the presence of heavy workloads of random 

updates, the previous FTL algorithms cannot guarantee robust I/O performance because of garbage 

collection overhears. Since the updates in the B-tree are random ones in nature, there is a need to develop an 

efficient B-tree algorithm suited for flash storage. 

 

2.2 Earlier Flash B+-trees 

Since the B+-tree imposes a majority of updates on its leaf level and the leaf nodes are distributed across 

storage, a flash B+-tree seems to inevitably suffer from frequent full merges because of many random 

updates. To solve such an inborn problem of the B+-tree stored in flash, some ideas about the flash B+-tree 

are proposed [3, 7-9, 11-16]. The flash B+-trees in [7, 8, 12] take an approach that updates on leaf nodes are 

not reflected in real-time. Instead, log data describing an update operation is temporally recorded in other 

tree levels above the leaf level of the B+-tree. When the amount of such log data for update operations 

becomes large enough, the data are physically flushed into leaf nodes in storage. To explain in more detail, 

let us suppose that a key k was deleted from the B+-tree and a certain process P is searching for key k. Also 

assume that the deletion of key k has been logged on any internal node. In this case, P can find the log data 

expressing the deletion of k, which is recorded in the middle of its downward search path. The key search of 

P can be finished without going to the leaf node.  

In [12], the update log is incrementally stored in a sub-tree that includes the tree root and upper internal 

nodes. Since the higher-level sub-tree is emptied at the initial time, it can record many of update operations 
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until it becomes full. When the nodes of the update-absorbing sub-tree is full because of key inserts and 

deletes, the update log stored in it are reflected by restructuring the whole leaf nodes in batch mode. During 

that time, the sub-tree is emptied again. Unlike [12], [7, 11, 13] does not initially allocate any separated 

sub-tree used for logging updates in the tree. Instead, they can dynamically adjust the sizes of logging areas 

based on a simple cost model. Those previous schemes using update log residing in internal nodes can 

replace many of out-of-place updates with writes to clean pages, although they have pay for the management 

cost of logging areas.  

Besides the log management cost, the schemes above have a problem regarding the concurrency control 

of the B+-tree. Under the traditional B+-tree concurrency control, the locking protocol called lock-coupling 

is applied to guarantee a consistent B+-tree state among concurrent B+-tree processes including searchers 

and updaters [19, 20]. Since the lock protocol assumes that all the keys are stored at the leaf level, it cannot 

correctly work for the B+-trees with update logs in internal nodes, without severe degradation of 

concurrency rate. Additionally, they cannot support fast range searches using the linkage constructed among 

leaf nodes. This is because the correct set of keys in a B+-tree is not visible without reading update log stored 

in internal nodes. 

To avoid problems above, other algorithms [10, 17] adopt the approach the conventional redo mechanism. 

In these algorithms, when a page (i.e., a node) is updated, the redo log record for that update operation is 

saved within a log area, which is prepared in a flash block. The log area for saving redo records uses a 

portion of pages located at the tail of the block. The pages preceding the log area is used for saving the 

images of nodes stored in the block. To update a node N in a block X, an associated redo log record is written 

to the log area of X. Corresponding, to get the latest version of node N correctly, [10, 17] reads both a node 

saving the original image of N and the whole redo log records in block X. If there exists any redo record(s) of 

N, the latest version of N is made through an appropriate redo action(s) on the original image of N. Then, the 

latest version of N is cached in the memory buffer.    

Although these schemes can completely remove the out-place-updates performed by FTL, they suffer 

from a waste of storage space for reserving a log area in every block. When a block happens to save internal 

nodes only, the log area in the block seems to be wasted because the B+-tree has infrequent updates at its 

internal levels. Moreover, since the memory buffer cannot cache the whole leaf nodes, the response time of 

key searches can get worse easily because of large I/O times for reading a significant size of redo log areas. 

To prevent the poor search time and storage utilization, we do not allocate such reserved log areas. We focus 

on how to update leaf nodes without the support of a FTL, without impairing the B+-tree performance of key 

searching. 

 

3. Proposed Flash B+-Tree 

3.1 Idea Sketch  

When a new record having key k is inserted into a B+-tree, a downward search is first performed to find a 

leaf node where the index entry of (k, PID) is inserted. Here, the PID is the page ID of the inserted record. If 

the reached leaf node is a full one, then tree reconstruction is executed for node splitting; otherwise, if the 

leaf node is a safe node, it is updated to include the new index entry. Because the probability of tree 

reconstruction is not high, a majority of node updates occur within the leaf level of the B-tree. In particular, 

the possibility of recursive occurrences of tree reconstruction is very low [20]. This is also true for key 

deletion operations in the B+-tree.  

In this light, our research is focused on how to update leaf nodes at cheap I/O costs. To this end, we 
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update leaf nodes without the help of FTL so that full merges can be evaded. In the case of internal nodes, 

meanwhile, they are updated via the FTL to retain the fast search speed. The proposed flash B+-tree achieves 

fast key search times by using the same structure of internal nodes as in the original B+-tree.  

To explain this, we use Figure 1. Figure 1(a) depicts a part of an ordinary B+-tree, where nodes A, B, and 

C are leaf nodes with rightward linkages for fast range searches. In that figure, the maximum-key fields are 

represented by the underlined symbols. The maximum-key field in leaf node N is used to express the 

maximum value of keys existing in N. The maximum-key field in the leaf node is commonly used for range 

searches [18-20]. Figure 1(b) shows how to store the sub-tree of Figure 1(a) in flash storage according to our 

proposed scheme. In the proposed B+-tree structure, the sibling leaf nodes, i.e., leaf nodes with the same 

parent, are stored in the same block as in Figure 1(b). In this paper, we refer to the disk block used for saving 

sibling leaf nodes as the SLB (Sibling-Leaf Block). 
 

 

Figure 1. The structure of the SLB for storing node Y and its child leaf nodes. 

As shown in Figure 1(b), the node Y is not saved in flash storage. The proposed B+-tree algorithm 

generates the node Y by referring the maximum-key fields of its child nodes. Note that the maximum-key 

values of  and  are the same as the key values of Y. Since the SLB saves all the leaf nodes with the same 

parent, we can always generate the virtual parent node by reading its SLB [20].   

By using the virtual node concept based on the SLB, we can efficiently perform out-of-place updates on 

leaf nodes. To see this, we give Figure 1(c). In the figure, we assume that node A and C were updated 

because of a key insert and a key delete on each node. To update nodes A and C, we have written their new 

version into clean pages located at the tail of the SLB. Correspondingly, the virtual node Y, which is existing 

only in the memory buffer, was modified to have new addresses of A and C in Figure 1(c). At this point, we 

can generate the node Y, if Y is evicted from the memory buffer pool. Since the new versions of A and C 

have the same maximum-key values as them of previous versions, respectively, the node Y can be generated 

to correctly point to new versions of A and C, that is, A’ and C’. The ways to build a B+-tree from leaf nodes 

in bottom-up fashion have been already addressed in literature [20]. 

To understand the benefit of the usage of virtual nodes, we suppose that node Y is stored in storage and 

node A is updated in out-of-place manner. Then, the node Y has to be updated to save the new address of 
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node A. Then, the parent node of Y needs to be updated as well, and its update will entail the next update of 

the parent node of it. Because of this cascading updates of nodes, this naïve update mechanism cannot be 

used for the B-tree in flash storage. For this reason, the mechanism of the logging based updating was 

employed in earlier flash B-trees [3, 6, 7, 10-13, 14, 17]. Unlike such schemes, we only have to store the new 

version of leaf nodes without any update on their parent node. Then, the correct image of the virtual node is 

obtained from in-SLB data of leaf nodes.  

To save the new versions of updated leaf nodes, every SLB keeps a part of pages as clean pages. Then, 

those new versions are saved in the clean page zone. When the clean page zone in an SLB becomes full 

because of update operations in it, the SLB is cleaned and all the up-to-date versions of leaf nodes are copied 

into the SLB. From this reclamation of the SLB, we can make the clean page zone again. This actions for 

garbage collection is very cheap, compared with that paid for full merges.   

 

3.2 Tree Reconstructing Algorithm 

For the purpose of the efficient concurrency control, many B+-tree algorithms do not provide the 

mechanism for node merging against node underflow. Instead, the underfollowed node is not reconstructed 

until it becomes empty. When the underfollowed node is emptied, that node is removed from the B+-tree [9]. 

Of course, in the case of node overflow, all the B+-tree algorithms performs the action of node splitting. We 

also follows such a general rule for node underflows and overflows in the B+-tree. 

Firstly, we explain how to split an overflowed node by writing new nodes in the SLB. In Figure 2(a), the 

virtual node Y currently points to its child nodes A and B. At this time, nodes A and B contain two and three 

index entries, respectively. Here, we assume that the leaf node can contain up to three index entries. Let us 

suppose that a new index entry is inserted into node B. Then, for node splitting we add two nodes of B’1 and 

B’2 into the clean page zone as in Figure 2(b), where   . To point to the new leaf nodes, the virtual node Y 

is also updated in the memory buffer. Since the maximum-key field of B’2 is the same as that of B, the node 

B has been replaced with B’2. 
 

 

Figure 2. The ways for tree reconstruction using the SLB. 
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Secondly, we explore the way for removing a node when it is emptied because of key deletes. Let us 

assume that an index entry is deleted from node A of Figure 2(b). Then, the new version of A is written in Y’s 

SLB. In Figure 2(c), the node A’ is used for saving the new version of A. At this time, the nodes A and A’ 

have the same maximum-key value. In the case of node Y, Y is updated to point to node    instead of A. 

Also suppose that a key delete arises on A’ and empties this node. Then, the emptied node is stored as node 

A’’ of Figure 2(c). At the same time, the pointer to A’ is deleted from Y. Finally, the SLB is made to contain 

six nodes and two nodes are valid out of them as in Figure 2(c).  

 

3.3 Search Algorithms 

As mentioned before, the proposed flash B+-tree is accessed via the memory buffer. For this, the buffer 

manager caches B+-tree nodes within its memory capacity and manipulates the cached nodes according to its 

buffer replacement policy. The algorithm for the single-key search is given in Figure 3. The algorithm 

accepts the key value to be searched for and the root node of the B+-tree. The search algorithm is not 

different from the original search algorithm that is used for disk-based B+-trees. The only difference is found 

in lines 3-5, where the virtual node is accessed. If the virtual node has not been cached at the search time, 

then it is generated from its SLB. The way for the virtual node generation is already addressed in Section 3.1.  

 

 

Figure 3. The proposed algorithm for single-key searching. 

Figure 4 is the algorithm that is used for a range key search, which is requested to search for the keys k of 

k_left  k  k_right. In the figure, the algorithm first moves down to the LSB where the index entry with key 

k_left can be found. Then, other keys greater than k_left are retrieved by following the rightward links made 

on SLBs. This is different from the original range search algorithm that moves rightwards by following links 

made among leaf nodes. Since the I/O speed for reading a block is 5X-7X faster than that for reading the 

same size of pages, the proposed range search can provide better response times.  
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Figure 4. The proposed algorithm for range key searches. 

4. Performance Evaluations 

In this section, we analyze the performance advantages of the proposed flash B+-tree algorithms, 

compared with the original B+-tree. For this end, we develop a mathematical performance model for 

estimating the average time to process search queries and B+-tree update operations.  

 

4.1 Performance Model 

To develop a mathematical performance model to be used, we take into account the cost factors of Table 

1. In the table, the symbol    is used as the buffer hit rate of a node that are accessed at the tree level i 

during downward searching. Here, the root node has the tree level of 1, and the tree level increases 

downwards to the leaf level. If a node being accessed is already cached in the memory buffer, the time for 

reading it is denoted by   . Otherwise, if that node has to be read from flash storage for its caching, the time 

for accessing it is denoted by   . The symbol    represents the time for writing a node into a clean page, 

and    is the time for updating a node via the FTL. By considering the full-merge overhead, we let the time 

of    be triple the time of   . The time for reading a SLB is denoted by         
 

Table 1. Cost Factors 

Symbols Descriptions 

  Height of the B+-tree to be considered 

   Buffer hit rate of a node at tree-level i 

   Time for reading a node being cached in memory buffer  

   Time for reading a node from a flash page 

   Time for writing a node into a flash page 

   Time for updating a node via the FTL 

   Time for reading a flash block 

   Maximum number of index entries in the node 

 

Based on the cost factors of Table 1 to be considered, we derive the performance model of the original 

B+-tree. The average time for searching for a key is given in Figure 5(a), and the average time for inserting 

or deleting a key is given in Figure 5(b). In Figure 5(a), the value of (    ) is the probability that a node 
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located at the tree-level i is not found in the memory buffer at the key search time, That is, that value 

corresponds to the buffer miss rate of that node. Since the number of index entries in a node ranges from 

  /2 to   , the probability of the occurrence of tree reconstruction is the same as 2/  . Here, we assume 

that the actual number of index entries existing in a node is uniformly distributed in the range of   /2 to 

  .  
 

        ∑                       

 

   

 

 

(a) average time for a key search 

                      ∑  
 

   
          

 

   

 

 

(b) average time for a key insert or delete 

Figure 5. Query processing time of the original disk-based B+-tree. 

Figure 6 shows the average search time and the average update time in the case of the proposed flash 

B+-tree. In Figure 6(a), the value of (      ) is the buffer miss rate of the virtual node being accessed. If a 

virtual node is missed in the buffer, then its SLB is read for generating that node. When the proposed B+-tree 

is updated due to a key insert or delete, the new version of the leaf node is written in   . If tree 

reconstruction is required on that leaf node, it can be completed with three times of node writes. When tree 

reconstruction is propagated above the virtual node, its ancestor nodes are updated via the FTL. Therefore, 

that time is computed by ∑   
 

   
          

 
    as in Figure 6(b). 
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(a) average time for a key search. 
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(b) average time for a key insert or delete 

Figure 6. Query processing time of the proposed flash B+-tree. 

4.2 Evaluation Results 

To evaluate the performance advantages of the proposed B+-tree, we use the performance model in 

Figures 5 and 6. The hardware specification of the used flash memory is given in Table 2. The sequential 

read in flash can provide faster I/O times than the random reads. Its I/O advantage is reported to provide 

5X-10X faster read speed, when a whole block is read, compared with the overall time for reading an equal 

size of scattered pages [12]. Based on the I/O feature reported, we chose a conservative level for the block 
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read, that is, the level of 5X. From this, we can get two different I/O times of a page read and a block read, 

respectively, as in Table 2.  
 

Table 2. Flash Memory Specs. 

Read Speed Write Speed Block Erase 

25 s 

(2KB of a page) 

320 s 

(128KB of a block) 

200 s 

(2KB of a page) 

1,500 s 

(128KB of a block) 

 

In Figure 7, we compare the processing time of key searches in the proposed flash B+-tree with that in the 

original B+-tree. Here, we compute the average processing time of key searches with respect to varying 

buffer miss rates. In the figure, the notation of Original (H=k) represents the original B+-tree with tree height 

k, while Proposed (H=k) denotes the proposed B+-tree with tree height k. The buffer miss rate is probability 

that virtual parent nodes are not found in the memory buffer during the search times. This rate is computed 

as the number of SLB reads over the total number of nodes read for key searches. The higher buffer miss rate 

entails the longer search times because of many of SLB reads.  
 

 

Figure 7. The average processing time for key searches with respect to varing buffer miss rates. 

As shown in Figure 7, in the range of high buffer miss rates the proposed B+-tree shows worse 

performance, compared with original one. However, such performance gaps are fast decreasing with the 

decreasing values of the buffer misses. With the buffer miss rate of 1%, as a result, the performance gap does 

not exceed 4%.  Since the internal nodes of a B+-tree are usually cached in the buffer during run-time, it is 

the case that the buffer miss of the virtual nodes is less than 1%. Note that most of buffer misses arise when a 

request for reading a leaf node is processed. Therefore, we can say that the proposed B+-tree scheme is 

nearly equivalent with the original B+-tree in terms of key search speeds.  

In Figure 8, we show the performance evaluations that have taken into account the factors of update 

operations. That is, to make performance evaluation more realistic, we consider a situation where update 

operations are executed together with key searches. In Figure 8, the average processing time on the vertical 

axis is obtained by averaging the processing times of search queries and update queries. The ratio of update 

queries is the portion of update queries with respect to the whole queries. The comparisons on the query 

processing times are done using two different values of buffer miss rates, that is, 20% and 5%.  
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Figure 8. The average processing time with respect to varing portions of update queries. 

As shown in Figure 8, the slopes of the increasing times for query processing are very steep in the case of 

Original. As a result, if the buffer miss rate is 5%, then Proposed provides a better processing time for the 

queries containing about 1% of update queries. Recall that such buffer miss rate is not low in a real 

processing environment. Therefore, we can say that the proposed B+-tree can provide better performance 

than the original B+-tree in most cases.  

To see the performance advantages of Proposed more specially, we performed additional evaluations. In 

Figure 9, we use a B+-tree with the tree height of 4 and the buffer miss rate of 5%. As known from Figure 9, 

the query processing time of Original increases at a faster rate. At the ratio of updaters of 20%, about 300% 

of the performance improvement is provide by Proposed. In the case of the ratio of updaters of 10%, the 

proposed B+-tree can reduce more than 50% of the query processing time, compared with the original 

B+-tree.  

 

Figure 9. The average processing time for some typical cases with four different ratios of updaters. 
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5. Conclusions 

During the past decades, the B+-tree has been most widely used as an index file structure for disk-resident 

databases. For the disk based B+-tree, a node update can be cheaply done by modifying its associated disk 

page in place. However, once the B+-tree is stored on flash memory, the traditional algorithms of the B+-tree 

seem to be inefficient due to the high cost of in-place updates on flash memory. For this reason, the earlier 

schemes for flash memory B+-trees usually take an approach that saves data of real-time updates into extra 

temporary storages. To keep tree consistency, at the same time, search processes are made to refer to that 

data during their top-down searches. Although that approach can easily evade frequent in-place updates in 

the B+-tree, it can suffer from a waste of storage space and prolonged search times. Particularly, it is not 

possible to process range searches by using a link connection chaining leaf nodes. To solve such problems, 

we devise a new scheme in which the leaf nodes and their parent node are stored together in a single flash 

block, called the sibling leaf block. Then, we also design some algorithms that are used to perform the node 

update in the unit of a sibling leaf block. From this, our scheme can improve the storage utilization and the 

efficiency of key search operations. 
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