References
- D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, May 2008. https://doi.org/10.1038/nature06932
- S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol. 10, pp. 1297-1301, Mar. 2010. https://doi.org/10.1021/nl904092h
- O. Bichler, W. Zhao, F. Alibart, S. Pleutin, D. Vuillaume, and C. Gamrat, "Functional model of a nanoparticle organic memory transistor for use as a spiking synapse," IEEE Trans. on Electron Devices, vol. 57, pp. 3115-3122, Nov. 2010. https://doi.org/10.1109/TED.2010.2065951
- S. Ramakrishnan, P. E. Hasler, and C. Gordon, "Floating gate synapses with spike-time-dependent plasticity," IEEE Trans. on Biomed. Circuits Syst., vol. 5, pp. 244-252, Jun. 2011. https://doi.org/10.1109/TBCAS.2011.2109000
- T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, "Short-term plasticity and long-term potentiation mimicked in single inorganic synapses," Nature Mater., vol. 10, pp. 591-595, Nov. 2011. https://doi.org/10.1038/nmat3054
- Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu, "Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor," Adv. Funct. Mater., vol. 22, pp. 2759-2765, Jul. 2012. https://doi.org/10.1002/adfm.201103148
- J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, "A correlated nickelate synaptic transistor," Nat. Commun., vol. 4, Oct. 2013.
- S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P. Wong, "An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation," IEEE Trans. on Electron Devices, vol. 58, pp. 2729-2737, Aug. 2011. https://doi.org/10.1109/TED.2011.2147791
- S. Park, J. Noh, M.-L. Choo, A. M. Sheri, M. Chang, Y.-B. Kim, et al., "Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device," Nanotechnology, vol. 24, p. 384009, Sep. 2013. https://doi.org/10.1088/0957-4484/24/38/384009
- M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, et al., "Neuromorphic Hardware System for Visual Pattern Recognition with Memristor Array and CMOS Neuron," IEEE Trans. on Ind. Electron., vol. 62, pp. 2410-2419, Apr. 2015.
- T. Dunwiddie and G. Lynch, "Long- term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency," J. Physiol., vol. 276, pp. 353-367, Mar. 1978. https://doi.org/10.1113/jphysiol.1978.sp012239
- P. Goelet, V. F. Castellucci, S. Schacher, and E. R. Kandel, "The long and the short of long-term memory: A molecular framework," Nature, vol. 322, pp. 419-422, Jul. 1986. https://doi.org/10.1038/322419a0
- T. V. Bliss and G. L. Collingridge, "A synaptic model of memory: long-term potentiation in the hippocampus," Nature, vol. 361, pp. 31-39, Jan. 1993. https://doi.org/10.1038/361031a0
- E. R. Kandel, "The molecular biology of memory storage: a dialogue between genes and synapses," Science, vol. 294, pp. 1030-1038, Nov. 2001. https://doi.org/10.1126/science.1067020
- R. C. Froemke and Y. Dan, "Spike-timingdependent synaptic modification induced by natural spike trains," Nature, vol. 416, pp. 433-438, Mar. 2002. https://doi.org/10.1038/416433a
- E. Campanac and D. Debanne, "Spike timingdependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons," J. Physiol., vol. 586, pp. 779-793, Feb. 2008. https://doi.org/10.1113/jphysiol.2007.147017
- N. L. Golding, N. P. Staff, and N. Spruston, "Dendritic spikes as a mechanism for cooperative long-term potentiation," Nature, vol. 418, pp. 326-331, Jul. 2002. https://doi.org/10.1038/nature00854
- P. J. Sjostrom and M. Hausser, "A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons," Neuron, vol. 51, pp. 227-238, Jul. 2006. https://doi.org/10.1016/j.neuron.2006.06.017
- P. J. Sjostrom, E. A. Rancz, A. Roth, and M. Hausser, "Dendritic excitability and synaptic plasticity," Physiol. Rev., vol. 88, pp. 769-840, Apr. 2008. https://doi.org/10.1152/physrev.00016.2007
- H. Kim, J. Park, M.-W. Kwon, J.-H. Lee, and B.-G. Park, "Silicon-based Floating-body Synaptic Transistor with Frequency Dependent Short-and Long-Term Memories," IEEE Electron Device Lett., vol. 37, pp. 249-252, 2016. https://doi.org/10.1109/LED.2016.2521863
- ATLAS User's Manual - Device Simulation Software 2015 Silvaco Inc. Santa Clara CA USA.
- S. Selberherr, "Analysis and simulation of semiconductor devices," Springer Science & Business Media, 1984.
- S. Tam, P.-K. Ko, and C. Hu, "Lucky-electron model of channel hot-electron injection in MOSFET's," IEEE Trans. on Electron Devices, vol. 31, pp. 1116-1125, Sep. 1984. https://doi.org/10.1109/T-ED.1984.21674
- S. Okhonin, M. Nagoga, and P. Fazan, "Principles of transient charge pumping on partially depleted SOI MOSFETs," IEEE Electron Device Lett., vol. 23, pp. 279-281, May 2002. https://doi.org/10.1109/55.998876
- H. Jeong, K.-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, "A new capacitorless 1T DRAM cell: Surrounding gate MOSFET with vertical channel (SGVC cell)," IEEE Trans. on Nanotechnol., vol. 6, pp. 352-357, May 2007. https://doi.org/10.1109/TNANO.2007.893575
- T. Tanaka, E. Yoshida, and T. Miyashita, "Scalability study on a capacitorless 1T-DRAM: from single-gate PD-SOI to double-gate FinDRAM," in IEEE Intl. Electron Devices Meeting Tech. Dig., pp. 919-922, 2004.
Cited by
- Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system vol.28, pp.40, 2017, https://doi.org/10.1088/1361-6528/aa86f8
- Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition With Noisy Images vol.39, pp.4, 2018, https://doi.org/10.1109/LED.2018.2809661
- Design and Characterization of Semi-Floating-Gate Synaptic Transistor vol.10, pp.1, 2019, https://doi.org/10.3390/mi10010032