DOI QR코드

DOI QR Code

기판 및 열처리 온도에 따른 SrWO4:Dy3+, Eu3+ 형광체 박막의 특성

Effects of Substrate and Annealing Temperatures on the Properties of SrWO4:Dy3+, Eu3+ Phosphor Thin Films

  • 김정윤 (신라대학교 신소재공학과) ;
  • 조신호 (신라대학교 신소재공학과)
  • Kim, Jungyun (Department of Materials Science and Engineering, Silla University) ;
  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • 투고 : 2016.07.27
  • 심사 : 2016.09.28
  • 발행 : 2016.10.27

초록

$Dy^{3+}$ and $Eu^{3+}$-codoped $SrWO_4$ phosphor thin films were deposited on sapphire substrates by radio frequency magnetron sputtering by changing the growth and thermal annealing temperatures. The results show that the structural and optical properties of the phosphor thin films depended on the growth and thermal annealing temperatures. All the phosphor thin films, irrespective of the growth or the thermal annealing temperatures, exhibited tetragonal structures with a dominant (112) diffraction peak. The thin films deposited at a growth temperature of $100^{\circ}C$ and a thermal annealing temperature of $650^{\circ}C$ showed average transmittances of 87.5% and 88.4% in the wavelength range of 500-1100 nm and band gap energy values of 4.00 and 4.20 eV, respectively. The excitation spectra of the phosphor thin films showed a broad charge transfer band that peaked at 234 nm, which is in the range of 200-270 nm. The emission spectra under ultraviolet excitation at 234 nm showed an intense emission peak at 572 nm and several weaker bands at 479, 612, 660, and 758 nm. These results suggest that the $SrWO_4$: $Dy^{3+}$, $Eu^{3+}$ thin films can be used as white light emitting materials suitable for applications in display and solid-state lighting.

키워드

참고문헌

  1. Q. Xiao, Q. Zhou and M. Li, J. Lumin., 130, 1092 (2010). https://doi.org/10.1016/j.jlumin.2010.02.001
  2. V. Nagirnyi, G. Geoffroy, R. Grigonis, S. Guizard, M. Kirm, A. Kotlov, L. L. Nagornaya, M. Nikl, V. Sirutkaitis and S. Vielhauer, Radiat. Meas., 45, 262 (2010). https://doi.org/10.1016/j.radmeas.2009.12.007
  3. F. M. Pontes, M. S. Galhiane, L. S. Santos, L. A. Petit, F. P. Kataoka, G. H. Mabuchi, E. Longo, M. Zampieri and P. S. Pizani, J. Alloy. Compd., 477, 608 (2009). https://doi.org/10.1016/j.jallcom.2008.10.134
  4. L. Chen and Y. Gao, Mater. Res. Bull., 42, 1823 (2007). https://doi.org/10.1016/j.materresbull.2006.12.002
  5. H. Kominami, T. Yamasaki, Y. Nakanishi and K. Hara, J. Lumin., 132, 3100 (2012). https://doi.org/10.1016/j.jlumin.2012.03.021
  6. V. S. Kavitha, R. R. Krishnan, R. S. Sreedharan, R. J. Bose, N. V. Pillai, V. Ganesan, P. Sreenivasan, V. Ragavendran, S. Muthunatesan and V. P. M. Pillai, Mat. Sci. Semicon. Proc., 37, 159 (2015). https://doi.org/10.1016/j.mssp.2015.02.049
  7. X. Liu, Y. Fan, S. Chen, M. Gu, C. Ni, B. Liu and S. Huang, Mater. Res. Bull., 48, 2370 (2013). https://doi.org/10.1016/j.materresbull.2013.02.072
  8. R. Wang, C. Liu, J. Zeng, K. W. Li and H. Wang, J. Solid State Chem., 182, 677 (2009). https://doi.org/10.1016/j.jssc.2008.12.014
  9. C. A. Kumar and D. Pamu, Ceram. Int., 41, S296 (2015). https://doi.org/10.1016/j.ceramint.2015.03.130
  10. S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae and K. H. Kim, Curr. Appl. Phys., 12, S150 (2012). https://doi.org/10.1016/j.cap.2012.02.048
  11. N. V. Pillai, V. P. M. Pillai, R. Vinodkumar, I. Navas, V. Ganesan and P. Koshy, J. Alloy. Compd., 509, 2745 (2011). https://doi.org/10.1016/j.jallcom.2010.11.061
  12. S. M. Ahmed, P. Szymanski, M. A. El-Sayed, Y. Badr and L. M. El-Nadi, Appl. Surf. Sci., 359, 356 (2015). https://doi.org/10.1016/j.apsusc.2015.10.151
  13. M. Muthusamy and S. Muthukumaran, Optik, 126, 5200 (2015). https://doi.org/10.1016/j.ijleo.2015.09.186
  14. L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou and X. Xu, J. Solid State Chem., 191, 175 (2012). https://doi.org/10.1016/j.jssc.2012.03.003
  15. Y. Z hang, W. Gong, J. Yu, H. Pang, Q. Song and G. Ning, RSC Adv., 5, 62527 (2015). https://doi.org/10.1039/C5RA12502B
  16. P. Babu, K. H. Jang, Ch. S. Rao, L. Shi, C. K. Jayasankar, V. Lavin and H. J. Seo, Opt. Express, 19, 1836 (2011). https://doi.org/10.1364/OE.19.001836
  17. X. Wang, S. Zhao, Y. Zhang and G. Sheng, J. Rare Earth., 28, 222 (2010). https://doi.org/10.1016/S1002-0721(10)60306-7
  18. P. Jena, S. K. Gupta, V. Natarajan, M. Sahu, N. Satyanarayana and M. Venkateswarlu, J. Lumin., 158, 203 (2015). https://doi.org/10.1016/j.jlumin.2014.09.042
  19. S. Cho, Trans. Electr. Electron. Mater., 10, 185 (2009). https://doi.org/10.4313/TEEM.2009.10.6.185
  20. W. H. Chao, R. J. Wu and T. B. Wu, J. Alloy. Compd., 506, 98 (2010). https://doi.org/10.1016/j.jallcom.2010.04.136
  21. J. H. Ryu, S. Y. Bang, W. S. Kim, G. S. Park, K. M. Kim, J. W. Yoon, K. B. Shim and N. Koshizaki, J. Alloy. Compd., 441, 146 (2007). https://doi.org/10.1016/j.jallcom.2006.07.130
  22. K. Mahmood, S. Bashir, M. K. U. Rahman, N. Farid, M. Akram, A. Hayat and F. U. Haq, Surf. Rev. Lett., 20, 1350032 (2013). https://doi.org/10.1142/S0218625X13500327