DOI QR코드

DOI QR Code

Reactivity Considerations with Miscibility of Process Gases in Semiconductor industry

반도체 산업 공정가스의 혼화성에 따른 반응성 고찰

  • Lee, Keun Won (Occupational Safety & Health Research Institute, KOSHA)
  • 이근원 (안전보건공단 산업안전보건연구원)
  • Received : 2016.08.03
  • Accepted : 2016.08.26
  • Published : 2016.08.30

Abstract

In the semiconductor industry, the risk of chemical accidents due to miscibility between the many types of chemicals and leakage of toxic chemicals has increased. In order to evaluate the reactivity with miscibility of chemicals, experimental method is the most reliable, but there is a time and cost limitations to be evaluated through experiment all the chemicals. In the study, the reactivity of process gases in the semiconductor industry was considered by the CRW (Chemical Reactivity Worksheets) 3.0 program developed by US NOAA (National Oceanic and Atmospheric Administration) and EPA. The reactivity informations with the miscibility of process gases for semiconductor industry provided, and also a KOSHA guide for the storage/separation of gas cylinders in dispensing cabinets in the semiconductor industry was proposed.

반도체 산업에서 많은 종류의 화학물질 사용으로 인한 독성물질 누출과 화학물질간의 혼화에 따른 화재 폭발 등에 의한 화학사고의 위험성이 증가하고 있다. 화학물질의 혼화에 따른 반응성을 평가하는데 실험적 방법이 가장 신뢰성 있지만, 모든 화학물질을 실험을 통하여 평가하는 것은 시간적, 비용적인 제한이 있다. 본 연구에서는 반도체 산업에서 주로 사용되는 공정가스의 위험성 추정하기 위해 미국 NOAA(National Oceanic and Atmospheric Administration)과 EPA에서 개발한 CRW(Chemical Reactivity Worksheet) 3.0 프로그램을 사용하여 공정가스의 반응성을 고찰하였다. 이들 연구 결과는 반도체산업의 공정가스의 혼화성에 따른 반응성 정보와 저장캐비닛의 가스 실린더 보관에 관한 KOSHA 기술지침 작성에 필요한 기초자료를 제시하고자 하였다.

Keywords

References

  1. Keun Won Lee, "Development of Reactivity Matrix to Determine Mixture Risk of Chemical Materials(I)", 2014-OSHRI-598, Occupational Safety and Health Research Institute, KOASH, (2014)
  2. Keun Won Lee, "Development of Reactivity Matrix to Determine Mixture Risk of Chemical Materials(II)", 2015-OSHRI-1094, Occupational Safety and Health Research Institute, KOASH, (2015)
  3. Dave Gorman et al., "Enhanced NOAA Chemical Reactivity Worksheet for Determining Chemical Compatibility", 9th Global Congress on Process Safety, San Antonio, Texas, (2013)
  4. L.E., Johnson and J.A. Farr, "CRW2-A Representative Compound Approach to Functionality-Based Prediction of Reactive Chemical Hazards", Process Safety Progress, 27(3), 212-218, (2008) https://doi.org/10.1002/prs.10248
  5. Edward Mark Davis et al., "The CCPS Chemical Reactivity Tools", 8th Global Congress on Process Safety, Houston, TX, 2-28, (2012)
  6. Chunyang Wei at al., "Application of screening tools in the prevention of reactive chemical incidents", J. of Loss Prevention in the Process Industries, 17, 261-269, (2004) https://doi.org/10.1016/j.jlp.2004.04.003
  7. D.A. Crowl and T.I. Elwell, "Idenfifying Criteria to Classify Chemical Mixtures as 'Highly Hazardous'due to Chemical Reactivity", J. of Loss Prevention in the Process Industries, 17, 279-289, (2004) https://doi.org/10.1016/j.jlp.2004.05.002
  8. Yen-Shan Liu et al., "Screening Reactive Chemical Hazards", CEP, 41-47, May (2006)
  9. Dave Gorman et al., "Enhanced NOAA Chemical Reactivity Worksheet for Determining checmial Compativility", Process Safety Progress, 33(1), 4-18, (2014) https://doi.org/10.1002/prs.11613
  10. SEMI S-0304, "Safety Guideline for the Separation of Chemical Cylinders Contained in Dispensing Cabinets", SEMI, (2004)
  11. SEMI S4-92, "Safety Guideline for the Segregation/Separation of Gas Cylinders Contained in Cabinets", SEMI, (1992)

Cited by

  1. A Study on the Estimation of Mixed Reaction Hazard Causing by VOCs in Landfill vol.35, pp.2, 2018, https://doi.org/10.9786/kswm.2018.35.2.134
  2. 합천군 오도산자연휴양림의 관속식물상 vol.27, pp.2, 2018, https://doi.org/10.14249/eia.2018.27.2.139