DOI QR코드

DOI QR Code

pH Effect at Thermophilic Solubilization Pretreatment of Food Waste in Two Phase Anaerobic Digestion

2상 혐기성 소화에서 음식물쓰레기의 고온 가용화 전처리 pH 영향

  • Lee, Won-Soo (Department of Environment Engineering, Changwon University) ;
  • Kang, Young-Jun (Department of Eco-friendly Offshore FEED Engineering, Changwon University) ;
  • Seo, Gyu-Tae (Department of Environment Engineering, Changwon University)
  • 이원수 (창원대학교 환경공학과) ;
  • 강영준 (창원대학교 해양플랜트 FEED 공학과) ;
  • 서규태 (창원대학교 환경공학과)
  • Received : 2016.06.17
  • Accepted : 2016.07.29
  • Published : 2016.08.31

Abstract

The study on pH control at the themophilic solubilization (pretreatment process) was investigated in order to improve the methane gas production of two phase anaerobic digestion of food waste. From a batch experiment, it was observed that the solubilization efficiency was increased from 26.2% to 47.1% and 55.6% by the pH increament from $4.20{\pm}0.40$ (without pH control) to $7.00{\pm}0.50$, and $12.00{\pm}0.50$, respectively. However there was immaterial increase (8.5%) in solubilization efficiency when the pH was increased from $7.00{\pm}0.50$ to $12.00{\pm}0.50$. The two phase anaerobic digestion system was operated for laboratory scale experiment under the solubilization condition of pH $4.20{\pm}0.40$ (Run1) and $7.00{\pm}0.50$ (Run2). Higher soluble chemical oxygen demand (SCOD) and total volatile fatty acid (TVFA) concentration were observed in Run2 throughout the system resulted by the solubilization effect at the pH $7.00{\pm}0.50$. The TVFA concentration in acidogenic reactor was 18.4 g/L which was 1.8 times higher than the result of Run1. Consequently the methane gas production was enhanced to 0.333 L/g VS in the methanogenic reactor, which is 18% higher than the result (0.282 L/g VS) of Run1.

본 연구는 음식물쓰레기의 2상 혐기성 소화에서 메탄가스 발생량을 높이기 위해 고온 가용화 전처리시 pH를 $7.00{\pm}0.50$으로 조정하여 대조군과 비교하였다. pH에 따른 가용화 효율 회분식(Batch) 실험에서 pH가 $4.20{\pm}0.40$ (pH를 조절하지 않은 것)에서부터 $7.00{\pm}0.50$, $12.00{\pm}0.50$으로 증가시킴에 따라 가용화 효율도 각각 26.2, 47.1, 55.6%로 높게 나타났다. 그러나 pH를 $7.00{\pm}0.50$에서 $12.00{\pm}0.50$으로 증가시켰을 때 가용화 효율은 8.5%증가로 큰 차이가 없었다. 실험실규모 2상 혐기성 소화시스템은 가용화 조건에서 pH를 조절하지 않은 Run1 (pH $4.20{\pm}0.40$)과 pH를 $7.00{\pm}0.50$으로 조절한 Run2로 나누어 운전되었다. pH $7.00{\pm}0.50$의 가용화에 의해 Run2시스템에서 전반적으로 높은 SCOD 및 TVFA농도가 측정되었다. 산생성조에서 TVFA농도는 18.4 g/L로 Run1보다 1.8배 높은 결과를 나타내었다. 그 결과 메탄생성조에서 메탄가스 발생량은 0.333 L/gVS로 Run1의 0.282 L/gVS과 비교하여 18% 향상되었다.

Keywords

References

  1. Korea Ministry of Environment, organic waste into energy utilization facilities(2014).
  2. Heo, A. H., Lee, E. Y., Kim, H. J. and Bae, J. H., "Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems," J. Korean Soc. Environ. Eng., 30(12), 1231-1238(2008).
  3. Kim, J. O., Cho, K. H. and Lee, C. H., "A study on Foodwaste Pretreatment for Anaerobic Digestion," J. Org. Reso. Recy. Assoc., 11(3), 60-66(2003).
  4. Song, Y. C., Woo, J. H. and Paik, B. C., "Influence of pH on the hydrolysis and Acidogenesis of Food Waste," J. Korean Soc. Civ. Eng. B., 22(6B), 851-857(2002).
  5. Hong, S. G., Shin, J. D., Heo, J. W., Park, W. K. and Shin, H. S., "Characteristics of Volatile Fatty Acids Release During the Hydrolysis of Rice Straw," J. Org. Reso. Recy. Assoc., 20(2), 36-43(2012).
  6. Choi, J. M. and Lee, C. Y., "Disintegration of Flotation scum in Food Wastewater Using Thermo-Alkaline Pretreatment," Korean Hydrol. And New Ene. Soc., 26(1), 71-78(2015). https://doi.org/10.7316/KHNES.2015.26.1.71
  7. Breure, A. M., Mooijman, K. A. and Van Andel, J. G., "Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin," Appl. Microbiol. Biotechnol., 24(5), 426-431(1986). https://doi.org/10.1007/BF00294602
  8. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C. and Li, M., "Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate," Bioresour. Technol., 143, 525-530(2013). https://doi.org/10.1016/j.biortech.2013.06.025
  9. Kim, H. J., Park, J. S., Kim, Y. J., Kim, D. Y. and Chung, T. H., "Effect of Alkaline Pretreatment on Solubilization and Acid Fermentation of the Food Waste," J. Korean Soc. Civ. Eng. B., 23(1B), 23-29(2003).
  10. Penaud, V., Delgenes, J. P. and Moletta, R., "Thermo-chemical pretreatment of a microbial biomass : influence of sodium hydroxide addition on solubilization and anaerobic biodegradability," Enzyme Micro. Technol., 25(3), 258-263(1999). https://doi.org/10.1016/S0141-0229(99)00037-X
  11. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W. and Lee, J,. "Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge," J. Biosci. Bioeng., 95(3), 271-275(2003). https://doi.org/10.1016/S1389-1723(03)80028-2
  12. Korea Ministry of Environment, Water pollution standard process test(2014).
  13. Zhang, B., Zhang, L. L., Zhang, S. C., Shi, H. Z. and Cai, W. M., "The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion," Environ. Technol., 26(3), 329-340(2005). https://doi.org/10.1080/09593332608618563
  14. Seong, C. Y. and Seo, G. T., "Effect of food waste on anaerobic hydrogen fermentation of urine diversion toilet waste," Thesis of master degree(2014).
  15. Kim, D. H., Lee, M. K., Moon, C., Yun, Y. M., Lee, W., Oh, S. E. and Kim, M. S., "Effect of hydraulic retention time on lactic acid production and granulation in an up-flow anaerobic sludge blanket reactor," Bioresour. Technol., 165, 158-161(2014). https://doi.org/10.1016/j.biortech.2014.03.097
  16. Sakai, K., Murata, Y., Yamazumi, H., Tau, Y., Mori, M., Moriguchi, M. and Shirai, Y., "Selective Proliferation of Lactic Acid Bacteria and Accumulation of Lactic Acid during Open Fermentation of Kitchen Refuse with Intermittent pH Adjustment," Food Sci. Technol. Res., 6(2), 140-145(2000). https://doi.org/10.3136/fstr.6.140
  17. Lee, B. S. Yoon, H. H. and Kim, E. K., "Optimization of Lactic Acid Production from Kitchen Refuses," Korean J. Biotechnol. Bioeng., 16(2), 207-211(2001).
  18. Kim, D. H., Kim, S. H. and Shin, H. S., "Hydrogen fermentation of food waste without inoculum addition," Enzyme Micro. Technol., 45(3), 181-187(2009). https://doi.org/10.1016/j.enzmictec.2009.06.013
  19. Wang, Y., Zhang, Y., Meng, L., Wang, J. and Zhang, W., "Hydrogen-methane production from swine manure: Effect of pretreatment and VFAs accumulation on gas yield," Biomass and Bioenergy, 33(9), 1131-1138(2009). https://doi.org/10.1016/j.biombioe.2009.04.004
  20. Chu, C. F., Li, Y. Y., Xu, K. Q., Ebie, Y., Inamori, Y. and Kong, H. N. A., "pH-and temperature-phased two-stage process for hydrogen and methane production from food waste," Int. J. Hydrogen Energy, 33(18), 4739-4746(2008). https://doi.org/10.1016/j.ijhydene.2008.06.060
  21. Ventura, J. R. S., Lee, J. and Jahng, D., "A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste," J. Environ. Sci., 26(6), 1274-1283(2014). https://doi.org/10.1016/S1001-0742(13)60599-9
  22. Jang, E. S., Ruy, S. H. and Phae, C. G., "Effect of TS Concentration on Anaerobic Digestion using Supernatant of Food Waste," J. Org. Reso. Recy. Assoc., 15(2), 118-127(2007).
  23. Wang, X. and Zhao, Y. C., "A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process," Int. J. Hydrogen Energy, 34(1), 245-254(2009). https://doi.org/10.1016/j.ijhydene.2008.09.100