DOI QR코드

DOI QR Code

Estimation of Total Material Requirement in Expressway Construction using Material Flow Analysis which is based on the Life Cycle Assessment

LCA기반 물질흐름분석 기법을 이용한 고속도로 건설에서의 총 자원요구량 산정

  • 공찬휘 (인하대학교 환경공학과) ;
  • 황용우 (인하대학교 환경공학과) ;
  • 문진영 (인하대학교 대학원 환경안전융합전공) ;
  • 곽인호 (인하대학교 대학원 환경안전융합전공)
  • Received : 2015.07.03
  • Accepted : 2016.03.30
  • Published : 2016.08.31

Abstract

During expressway construction it has been input a lot of material, but it does not manage to estimate quantitatively. In this study, the total material requirement for construction of expressway, which separated direct material requirement and indirect material requirement each section was quantified by combining life cycle assessment (LCA) and material flow analysis (MFA). In the direct material requirement, sand 2.27E + 04 ton/km, limestone 1.02E + 04 ton/km and gravel 4.47E + 03 ton/km were required, in the indirect material requirement, gravel 2.75E + 04 ton/km, iron 9.80E + 03 ton/km and coal 9.74E + 03 ton/km were required. Material such as sand, limestone which has high direct material requirement is require of excess input prevention from construction site, and material such as iron, rare metals(chrome, nickel) and coal which has high indirect material requirement is require additional studies of resource management.

고속도로의 건설시 많은 자원이 투입되고 있으나 이를 정량적으로 산정하여 관리하고 있지 않다. 본 연구에서는 LCA기법을 MFA에 접목하여 고속도로의 건설시 투입되는 총 자원요구량을 구간별로 직접 자원요구량과 간접 자원요구량으로 구분하여 산정하였다. 그 결과 직접 자원요구량은 모래 2.27E + 04 ton/km, 석회암 1.02E + 04 ton/km 및 자갈 4.47E + 03 ton/km 순으로 나타났으며, 간접 자원요구량은 자갈 2.75E + 04 ton/km, 철 9.80E + 03 ton/km 및 석탄 9.74E + 03 ton/km 순으로 나타났다. 따라서 모래, 석회암 등과 같은 직접 자원요구량이 높은 자원들은 시공현장에서 과량투입 방지와 같은 자원관리가 필요할 것으로 판단되며, 철을 비롯한 희유금속(크롬, 니켈) 및 석탄과 같은 간접 자원요구량이 높은 자원들도 자원관리 측면의 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Korea institute of geoscience and mineral resources, Resource overview(2010).
  2. Koh, S.-M., Lee, G.-J. and Yu, B.-C., "Situation of domestic and foreign rare metal resources," In Proceedings of the annual joint conference, Petrological society of korea and mineralogical society of korea, Jeonju, May, pp. 27-28(2010).
  3. Choi, D.-S., Lee, M.-E. and Cho, K.-H., "A study on environmental impact assessment in domestic construction industry using life cycle assessement," J. KIAEBS, pp. 46-56(2012).
  4. Kim, J.-Y., Lee, S.-E. and Sohn, J.-Y., "An estimation of the energy consumption & CO2 emission intensity during building construction," The Architectural Inst. Korea, 20(10), 319-326(2004).
  5. Kang, H. G., Kim, S. T., Kim, H. R., Park, T. K., An, S. S. and Lee, S. E., "Assessment of environment-friendly degree in road routes," Korean Soc. Road Eng., 13(1), 129-138(2011).
  6. Minister of Land, Infrastructure and Transport, Road business guide.
  7. Kwak, I.-H., Kim, K.-H., Wie, D.-H., Park, K.-H. and Hwang, Y.-W., "Calculation of Basic Unit of Carbon Emissions in Operation and Maintenance Stage of Road Infrastructure," J. Korean Soc. Transp., 33(3), 237-246(2015). https://doi.org/10.7470/jkst.2015.33.3.237
  8. Cho, Y. T. and Choi, J. S., "Material Flow Analysis and its implication for sustainability policy," Korea Environ. Inst., 5(2), 1-26(2006).
  9. Jo, "Development of damage factors in Life Cycle Impact Assessment using of fate and exposure analysis," Master's theses of Inha University(2004).
  10. Hwang, Y. W., Park, K. H. and Seo, S. W., "Assessment of $CO_2$ emissions from road construction activities," Korean Soc. Civil Eng., 20(1), 113-121(2000).
  11. Korean standards information center, http://www.standard.go.kr
  12. Ecoinvent, http://www.ecoinvent.org