Acknowledgement
Supported by : Deutsche Forschungsgemeinschaft (DFG)
References
- Akdogan, E.K., Kerman, K., Abazari, M. and Safari, A. (2008), "Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics", Appl. Phys. Lett., 92(11).
- Bafandeh, M.R., Gharahkhani, R. and Lee, J.S. (2014), "Enhanced electric field induced strain in SrTiO3 modified (K,Na)NbO3-based piezoceramics", J. Alloy. Comp., 602, 285-289. https://doi.org/10.1016/j.jallcom.2014.02.185
- Baker, D.W., Thomas, P.A., Zhang, N. and Glazer, A.M. (2009), "A comprehensive study of the phase diagram of KxNa1-xNbO3", Appl. Phys. Lett., 95, 091903. https://doi.org/10.1063/1.3212861
- Cardin, A., Wessler, B., Schuh, C., Steinkopff, T. and Maier, W. F. (2007), "High throughput experimentation for the development of new piezoelectric ceramics", J. Electroceram., 19, 267-272. https://doi.org/10.1007/s10832-007-9060-3
- Cawse, J.N. (2003), Experimental design for combinatorial and high throughput materials development (1st Edition), John Wiley and Sons New York, USA.
- Council, E.P.a.t. (2003), "Directive 2002/95/EC of the European parliament and of the council of January 2003 on the restriction of the use of harzardous substances in electrical and electronic equipment", Eur. J., 37, 1-9.
- Dittmer, R. et al. (2012), "A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3", J. Am. Ceram. Soc., 95(11), 3519-3524. https://doi.org/10.1111/j.1551-2916.2012.05321.x
- Du, H., Liu, D., Tang, F., Zhu, D., Zhou, W. and Qu, S. (2007), "Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0. 5Na0. 5) NbO3 Lead-Free Ceramics", J. Am. Ceram. Soc., 90(9), 2824-2829. https://doi.org/10.1111/j.1551-2916.2007.01846.x
- Dunn, M.L. and Taya, M. (1993), "Electromechanical properties of porous piezoelectric ceramics", J. Am. Ceram. Soc., 76(7), 1697-1706. https://doi.org/10.1111/j.1151-2916.1993.tb06637.x
- Egerton, L. and Dillon, D.M. (1959), "Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate", J. Am. Ceram. Soc., 42(9), 438-442. https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
- Gopalakrishnan, J. (1986), "Synthesis and structure of some interesting oxides of bismuth", J. Chem. Sci., 96(6), 449-458. https://doi.org/10.1007/BF02936297
- Guo, Y., kakimoto, K.i. and Ohsato, H. (2005), (Na0.5K0.5)NbO3 - LiTaO3 lead-free piezoeletric ceramics, Mater. Lett., 59(2), 241-244. https://doi.org/10.1016/j.matlet.2004.07.057
- Hagh, N.M., Jadidian, B. and Safari, A. (2007), "Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system", J. Electroceramics, 18(3-4), 339-346. https://doi.org/10.1007/s10832-007-9171-x
- Jaffe, B., Jaffe, H. and Cook, W.R. (1971), PIEZOELECTRIC CERAMICS (First Edition), Academic Press, London, UK.
- Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E. et al. (2012), "Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective", J. Electroceram, 29, 71-93. https://doi.org/10.1007/s10832-012-9742-3
- Li, J.F., Wang, K., Zhu, F.Y., Cheng, L.Q. and Yao, F.Z. (2013), (K, Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, J. Am. Ceram. Soc., 96(12), 3677-3696. https://doi.org/10.1111/jace.12715
- Lily, Yadav, K.L. and Prasad, K. (2013), "Electrical properties of (Na0.5Bi0.5)(Zr0.75Ti0.25)O3 ceramic", Adv. Mater. Res., 2(1), 1-13. https://doi.org/10.12989/amr.2013.2.1.001
- Mgbemere, H.E., Herber, R.P. and Schneider, G.A. (2009), "Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics", J. Eur. Ceram. Soc., 29(9), 1729-1733. https://doi.org/10.1016/j.jeurceramsoc.2008.10.012
- Mgbemere, H.E., Hinterstein, M. and Schneider, G.A. (2011), "Electrical and structural characterization of (KxNa1-x)NbO3 ceramics modified with Li and Ta", J. Appl. Cryst., 44(5), 1080-1089. https://doi.org/10.1107/S0021889811027701
- Mgbemere, H.E., Janssen, R. and Schneider, G.A. (2015), "Investigation of the phase space in lead-free (KxNa1-x)1-yLiy(Nb1-zTaz)O3 ferroelectric ceramics", J. Adv. Ceram., 4(4), 282-291. https://doi.org/10.1007/s40145-015-0162-0
- Moure, A., Castro, A. and Pardo, L. (2009), "Aurivillius-type ceramics, a class of high temperature piezoelectric materials: Drawbacks, advantages and trends", Prog. Solid State Chem., 37(1), 15-39. https://doi.org/10.1016/j.progsolidstchem.2009.06.001
- Nath, K.A. and Prasad, K. (2012), "Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic", Adv. Mater. Res., 1(2), 115-128. https://doi.org/10.12989/amr.2012.1.2.115
- Saito, Y. and Takao, H. (2006), "High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system", Ferroelectrics, 338, 17-32. https://doi.org/10.1080/00150190600732512
- Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T. et al. (2004), "Lead-free piezoceramics", Nature, 432(7013), 84-87. https://doi.org/10.1038/nature03028
- Stegk, T.A., Janssen, R. and Schneider, G.A. (2008), "High-throughput synthesis and characterization of bulk ceramics from dry powders", J. Comb. Chem., 10(2), 274-279. https://doi.org/10.1021/cc700145q
- Takenaka, T., Okuda, T. and Takegahara, K. (1997), "Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3", Ferroelectrics, 196(1), 175-178. https://doi.org/10.1080/00150199708224156
- Van Dover, R.B., Schneemeyer, L.F., Fleming, R.M. and Huggins, H.A. (1999), "A high-throughput search for electronic materials-thin-film dielectrics", Biotech. Bioeng., 61(4), 217-225. https://doi.org/10.1002/(SICI)1097-0290(1998)61:4<217::AID-CC4>3.0.CO;2-L
- Wang, F., Xu, M., Tang, Y., Wang, T., Shi, W. and Leung, C.M. (2012), "Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions", J. Am. Ceram. Soc., 95(6), 1955-1959. https://doi.org/10.1111/j.1551-2916.2012.05119.x
- Wang, K. et al. (2013), "Temperature-Insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics", Adv. Funct. Mater., 23(33), 4079-4086. https://doi.org/10.1002/adfm.201203754
- Xiang, X.D. (1998), "Combinatorial synthesis and high throughput evaluation of functional oxides-A integrated materials chip approach", Mat. Sci. Eng. B, 56(2), 246-250. https://doi.org/10.1016/S0921-5107(98)00221-9
- Yao, F.Z., Wang, K., Jo, W., Webber, K.G., Comyn, T.P., Ding, J.X. et al. (2016), "Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics", Adv. Funct. Mater., 26, 1217-1224. https://doi.org/10.1002/adfm.201504256
- Zhan, Y., Chen, L., Yang, S. and Evans, J.R.G. (2007), "Thick film ceramic combinatorial libraries: The substrate problem", QSAR Comb. Sci., 26(10), 1036-1045. https://doi.org/10.1002/qsar.200620162
- Zhou, J.J., Li, J.F., Chenga, L.Q., Wang, K., Zhang, X.W. and Wang, Q.M. (2012), "Addition of small amounts of BiFeO3 to (Li,K,Na)(Nb,Ta)O3 lead-free ceramics: Influence on phase structure, microstructure and piezoelectric properties", J. Eur. Ceram. Soc., 32(13), 3575-3582. https://doi.org/10.1016/j.jeurceramsoc.2012.05.019
- Zhou, J.J., Li, J.F., Wang, K. and Zhang, X.W. (2011), "Phase structure and electrical properties of (Li,Ta)-doped(K,Na)NbO3 lead-free piezoelectrics in the vicinity of Na/K =50/50", J. Mater. Sci., 46(15), 5111-5116. https://doi.org/10.1007/s10853-011-5442-7