DOI QR코드

DOI QR Code

Effect of Bi4Zr3O12 on the properties of (KxNa1-x)NbO3 based ceramics

  • Mgbemere, Henry. E. (Department of Metallurgical and Materials Engineering, University of Lagos Akoka Lagos) ;
  • Akano, Theddeus T. (Department of Systems Engineering, University of Lagos Akoka Lagos) ;
  • Schneider, Gerold. A. (Institute of Advanced Ceramics, Hamburg University of Technology)
  • Received : 2016.06.24
  • Accepted : 2016.09.21
  • Published : 2016.06.25

Abstract

KNN-based ceramics modified with small amounts of $Bi_4Zr_3O_{12}$ (BiZ) has been synthesized using high-throughput experimentation (HTE). The results from X-ray diffraction show that for samples with base composition $(K_{0.5}Na_{0.5})NbO_3$ (KNN), the phase present changes from orthorhombic to pseudo-cubic with more than 0.2 mol% BiZ addition; for samples with base composition $(K_{0.48}Na_{0.48}Li_{0.04})(Nb_{0.9}Ta_{0.1})O_3$ (KNNLT), the phase present changes from a mixture of orthorhombic and tetragonal symmetry to pseudo-cubic with more than 0.4 mol % while for samples with base composition $(K_{0.48}Na_{0.48}Li_{0.04})(Nb_{0.86}Ta_{0.1}Sb_{0.04})O_3$ (KNNLST), the phase present is tetragonal with <0.3 mol% BiZ addition and transforms to pseudo-cubic with more dopant addition. The microstructures of the samples show that addition of BiZ decreases the average grain size and increases the volume of pores at the grain boundaries. The values of dielectric constant for KNN and KNNLT compositions increase slightly with BiZ addition while that for KNNLST decreases gradually with BiZ addition. The dielectric loss values are between 0.02 and 0.04 for KNNLT and KNNLST compositions while they are ~ 0.05 for KNN samples. The resistivity values increases with BiZ addition and values in the range of $10^{10}{\Omega}cm$ and $10^{12}{\Omega}cm$ are obtained. The piezoelectric charge coefficient ($d{^*}_{33}$) is highest for KNNLST samples and decreases gradually from ~400 pm/V to ~100 pm/V with BiZ addition.

Keywords

Acknowledgement

Supported by : Deutsche Forschungsgemeinschaft (DFG)

References

  1. Akdogan, E.K., Kerman, K., Abazari, M. and Safari, A. (2008), "Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics", Appl. Phys. Lett., 92(11).
  2. Bafandeh, M.R., Gharahkhani, R. and Lee, J.S. (2014), "Enhanced electric field induced strain in SrTiO3 modified (K,Na)NbO3-based piezoceramics", J. Alloy. Comp., 602, 285-289. https://doi.org/10.1016/j.jallcom.2014.02.185
  3. Baker, D.W., Thomas, P.A., Zhang, N. and Glazer, A.M. (2009), "A comprehensive study of the phase diagram of KxNa1-xNbO3", Appl. Phys. Lett., 95, 091903. https://doi.org/10.1063/1.3212861
  4. Cardin, A., Wessler, B., Schuh, C., Steinkopff, T. and Maier, W. F. (2007), "High throughput experimentation for the development of new piezoelectric ceramics", J. Electroceram., 19, 267-272. https://doi.org/10.1007/s10832-007-9060-3
  5. Cawse, J.N. (2003), Experimental design for combinatorial and high throughput materials development (1st Edition), John Wiley and Sons New York, USA.
  6. Council, E.P.a.t. (2003), "Directive 2002/95/EC of the European parliament and of the council of January 2003 on the restriction of the use of harzardous substances in electrical and electronic equipment", Eur. J., 37, 1-9.
  7. Dittmer, R. et al. (2012), "A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3", J. Am. Ceram. Soc., 95(11), 3519-3524. https://doi.org/10.1111/j.1551-2916.2012.05321.x
  8. Du, H., Liu, D., Tang, F., Zhu, D., Zhou, W. and Qu, S. (2007), "Microstructure, Piezoelectric, and Ferroelectric Properties of Bi2O3-Added (K0. 5Na0. 5) NbO3 Lead-Free Ceramics", J. Am. Ceram. Soc., 90(9), 2824-2829. https://doi.org/10.1111/j.1551-2916.2007.01846.x
  9. Dunn, M.L. and Taya, M. (1993), "Electromechanical properties of porous piezoelectric ceramics", J. Am. Ceram. Soc., 76(7), 1697-1706. https://doi.org/10.1111/j.1151-2916.1993.tb06637.x
  10. Egerton, L. and Dillon, D.M. (1959), "Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate", J. Am. Ceram. Soc., 42(9), 438-442. https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  11. Gopalakrishnan, J. (1986), "Synthesis and structure of some interesting oxides of bismuth", J. Chem. Sci., 96(6), 449-458. https://doi.org/10.1007/BF02936297
  12. Guo, Y., kakimoto, K.i. and Ohsato, H. (2005), (Na0.5K0.5)NbO3 - LiTaO3 lead-free piezoeletric ceramics, Mater. Lett., 59(2), 241-244. https://doi.org/10.1016/j.matlet.2004.07.057
  13. Hagh, N.M., Jadidian, B. and Safari, A. (2007), "Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system", J. Electroceramics, 18(3-4), 339-346. https://doi.org/10.1007/s10832-007-9171-x
  14. Jaffe, B., Jaffe, H. and Cook, W.R. (1971), PIEZOELECTRIC CERAMICS (First Edition), Academic Press, London, UK.
  15. Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E. et al. (2012), "Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective", J. Electroceram, 29, 71-93. https://doi.org/10.1007/s10832-012-9742-3
  16. Li, J.F., Wang, K., Zhu, F.Y., Cheng, L.Q. and Yao, F.Z. (2013), (K, Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, J. Am. Ceram. Soc., 96(12), 3677-3696. https://doi.org/10.1111/jace.12715
  17. Lily, Yadav, K.L. and Prasad, K. (2013), "Electrical properties of (Na0.5Bi0.5)(Zr0.75Ti0.25)O3 ceramic", Adv. Mater. Res., 2(1), 1-13. https://doi.org/10.12989/amr.2013.2.1.001
  18. Mgbemere, H.E., Herber, R.P. and Schneider, G.A. (2009), "Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics", J. Eur. Ceram. Soc., 29(9), 1729-1733. https://doi.org/10.1016/j.jeurceramsoc.2008.10.012
  19. Mgbemere, H.E., Hinterstein, M. and Schneider, G.A. (2011), "Electrical and structural characterization of (KxNa1-x)NbO3 ceramics modified with Li and Ta", J. Appl. Cryst., 44(5), 1080-1089. https://doi.org/10.1107/S0021889811027701
  20. Mgbemere, H.E., Janssen, R. and Schneider, G.A. (2015), "Investigation of the phase space in lead-free (KxNa1-x)1-yLiy(Nb1-zTaz)O3 ferroelectric ceramics", J. Adv. Ceram., 4(4), 282-291. https://doi.org/10.1007/s40145-015-0162-0
  21. Moure, A., Castro, A. and Pardo, L. (2009), "Aurivillius-type ceramics, a class of high temperature piezoelectric materials: Drawbacks, advantages and trends", Prog. Solid State Chem., 37(1), 15-39. https://doi.org/10.1016/j.progsolidstchem.2009.06.001
  22. Nath, K.A. and Prasad, K. (2012), "Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic", Adv. Mater. Res., 1(2), 115-128. https://doi.org/10.12989/amr.2012.1.2.115
  23. Saito, Y. and Takao, H. (2006), "High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system", Ferroelectrics, 338, 17-32. https://doi.org/10.1080/00150190600732512
  24. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T. et al. (2004), "Lead-free piezoceramics", Nature, 432(7013), 84-87. https://doi.org/10.1038/nature03028
  25. Stegk, T.A., Janssen, R. and Schneider, G.A. (2008), "High-throughput synthesis and characterization of bulk ceramics from dry powders", J. Comb. Chem., 10(2), 274-279. https://doi.org/10.1021/cc700145q
  26. Takenaka, T., Okuda, T. and Takegahara, K. (1997), "Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3", Ferroelectrics, 196(1), 175-178. https://doi.org/10.1080/00150199708224156
  27. Van Dover, R.B., Schneemeyer, L.F., Fleming, R.M. and Huggins, H.A. (1999), "A high-throughput search for electronic materials-thin-film dielectrics", Biotech. Bioeng., 61(4), 217-225. https://doi.org/10.1002/(SICI)1097-0290(1998)61:4<217::AID-CC4>3.0.CO;2-L
  28. Wang, F., Xu, M., Tang, Y., Wang, T., Shi, W. and Leung, C.M. (2012), "Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions", J. Am. Ceram. Soc., 95(6), 1955-1959. https://doi.org/10.1111/j.1551-2916.2012.05119.x
  29. Wang, K. et al. (2013), "Temperature-Insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics", Adv. Funct. Mater., 23(33), 4079-4086. https://doi.org/10.1002/adfm.201203754
  30. Xiang, X.D. (1998), "Combinatorial synthesis and high throughput evaluation of functional oxides-A integrated materials chip approach", Mat. Sci. Eng. B, 56(2), 246-250. https://doi.org/10.1016/S0921-5107(98)00221-9
  31. Yao, F.Z., Wang, K., Jo, W., Webber, K.G., Comyn, T.P., Ding, J.X. et al. (2016), "Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics", Adv. Funct. Mater., 26, 1217-1224. https://doi.org/10.1002/adfm.201504256
  32. Zhan, Y., Chen, L., Yang, S. and Evans, J.R.G. (2007), "Thick film ceramic combinatorial libraries: The substrate problem", QSAR Comb. Sci., 26(10), 1036-1045. https://doi.org/10.1002/qsar.200620162
  33. Zhou, J.J., Li, J.F., Chenga, L.Q., Wang, K., Zhang, X.W. and Wang, Q.M. (2012), "Addition of small amounts of BiFeO3 to (Li,K,Na)(Nb,Ta)O3 lead-free ceramics: Influence on phase structure, microstructure and piezoelectric properties", J. Eur. Ceram. Soc., 32(13), 3575-3582. https://doi.org/10.1016/j.jeurceramsoc.2012.05.019
  34. Zhou, J.J., Li, J.F., Wang, K. and Zhang, X.W. (2011), "Phase structure and electrical properties of (Li,Ta)-doped(K,Na)NbO3 lead-free piezoelectrics in the vicinity of Na/K =50/50", J. Mater. Sci., 46(15), 5111-5116. https://doi.org/10.1007/s10853-011-5442-7