References
- Ansari, R. and Arjangpay, A. (2014), "Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov-Galerkin method", Physica E, 63, 283-292. https://doi.org/10.1016/j.physe.2014.06.013
- Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Physica E, 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
- Fan, Y. and Wang, H. (2016), "The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers", Compos. Part B, 106, 28-41. https://doi.org/10.1016/j.compositesb.2016.09.005
- Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2016), "Free vibration analysis of arbitrarily shaped functionally graded Carbon Nanotube-reinforced plates", Compos. Part B. [In Press] DOI: http://dx.doi.org/10.1016/j.compositesb.2016.09.021
- Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
- Fidelus, J.D.D., Wiesel, E., Gojny, F.H.H., Schulte, K. and Wagner, H.D.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. A Appl. Sci. Manuf., 36(11), 1555-61. https://doi.org/10.1016/j.compositesa.2005.02.006
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/ carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomerated CNTs on vibration of CNTreinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Comput., 218(17), 8715-8735. https://doi.org/10.1016/j.amc.2012.01.080
- Iijima, S. (1991), "Helical microtubles of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605. https://doi.org/10.1038/363603a0
- Jafari Mehrabadi, S. and Sobhani Aragh, B. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
- Jam, J.E., Pourasghar, A. and Kamarian, S. (2012), "The effect of the aspect ratio and waviness of CNTs on the vibrational behavior of functionally graded nanocomposite cylindrical panels", Polym. Compos., 33(11), 2036-2044. https://doi.org/10.1002/pc.22346
- Kaci, A., Tounsi, A., Bakhti, K. and Bedia, E.A.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., Int. J., 12(6), 491-504. https://doi.org/10.12989/scs.2012.12.6.491
- Kamarian, S., Pourasghar, A. and Yas, M.H. (2013), "Eshelby-Mori-Tanaka approach for vibrational behavior of functionally graded carbon nanotube-reinforced plate resting on elastic foundation", J. Mech. Sci. Technol., 27(11), 3395-3401. https://doi.org/10.1007/s12206-013-0861-9
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes", Inter. J. Mech. Sci., 108-109, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006
- Kundalwal, S.I. and Ray, M.C. (2013), "Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites", ASME J. Appl. Mech., 80(2), 021010. https://doi.org/10.1115/1.4007722
- Lancaster, P. and Salkauskas, K. (1981), "Surface generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013a), "Buckling analysis of functionally graded carbon nanotubereinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016), "Dynamic stability analysis of carbon nanotubereinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338.
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites, A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002
- Meguid, S.A. and Sun, Y. (2004), "On the tensile and shear strength of nano-reinforced composite interfaces", Mater. Des., 25(4), 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
- Mehar, K., Panda, S.K., Dehengia, A. and Ranjan Kar, V. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sand. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
- Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
- Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22(4), 1062-1075. https://doi.org/10.1177/1077546314539368
- Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013a), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
- Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013b), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinf. Plast. Compos., 32(9), 593-601. https://doi.org/10.1177/0731684413476353
- Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M. and Bidram, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48, 1901-1913. https://doi.org/10.1177/0021998313491617
- Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-72.
- Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models", Compos. Sci. Technol., 67(10), 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016
- Shams, S. and Soltani, B. (2015), "The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method", Polymer Compos. DOI: 10.1002/pc.23814
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube- reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B, 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
- Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polymer, 47(5), 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
- Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Yas, M.H. and Sobhani Aragh, B. (2010), "Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation", Inter. J. Eng. Sci., 48(12), 1881-1895. https://doi.org/10.1016/j.ijengsci.2010.06.015
- Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015a), "An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations", Eng. Anal. Bound. Elem., 58, 7-17. https://doi.org/10.1016/j.enganabound.2015.03.004
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2015b), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
Cited by
- Modeling of thermomechanical properties of polymeric hybrid nanocomposites 2017, https://doi.org/10.1002/pc.24483
- Low-velocity impact analysis of carbon nanotube reinforced composite laminates vol.53, pp.1, 2018, https://doi.org/10.1007/s10853-017-1538-z
- Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates 2017, https://doi.org/10.1002/zamm.201600209
- Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.359
- Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2016, https://doi.org/10.12989/scs.2017.24.5.537
- Mathematical modelling of the stability of carbon nanotube-reinforced panels vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.727
- Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.315
- Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
- Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.649
- Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.249
- A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.099
- Free vibration analysis of polyethylene/CNT plates vol.134, pp.6, 2016, https://doi.org/10.1140/epjp/i2019-12650-x
- Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.711
- Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes vol.23, pp.3, 2016, https://doi.org/10.1177/1099636219848282
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.477
- Aerodynamic Analysis of Temperature-Dependent FG-WCNTRC Nanoplates under a Moving Nanoparticle using Meshfree Finite Volume Method vol.134, pp.None, 2016, https://doi.org/10.1016/j.enganabound.2021.10.021