DOI QR코드

DOI QR Code

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Received : 2016.02.09
  • Accepted : 2016.10.05
  • Published : 2016.10.10

Abstract

In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Keywords

References

  1. Ansari, R. and Arjangpay, A. (2014), "Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov-Galerkin method", Physica E, 63, 283-292. https://doi.org/10.1016/j.physe.2014.06.013
  2. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Physica E, 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
  3. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
  4. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
  5. Fan, Y. and Wang, H. (2016), "The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers", Compos. Part B, 106, 28-41. https://doi.org/10.1016/j.compositesb.2016.09.005
  6. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2016), "Free vibration analysis of arbitrarily shaped functionally graded Carbon Nanotube-reinforced plates", Compos. Part B. [In Press] DOI: http://dx.doi.org/10.1016/j.compositesb.2016.09.021
  7. Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
  8. Fidelus, J.D.D., Wiesel, E., Gojny, F.H.H., Schulte, K. and Wagner, H.D.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. A Appl. Sci. Manuf., 36(11), 1555-61. https://doi.org/10.1016/j.compositesa.2005.02.006
  9. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/ carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  10. Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomerated CNTs on vibration of CNTreinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Comput., 218(17), 8715-8735. https://doi.org/10.1016/j.amc.2012.01.080
  11. Iijima, S. (1991), "Helical microtubles of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  12. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605. https://doi.org/10.1038/363603a0
  13. Jafari Mehrabadi, S. and Sobhani Aragh, B. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
  14. Jam, J.E., Pourasghar, A. and Kamarian, S. (2012), "The effect of the aspect ratio and waviness of CNTs on the vibrational behavior of functionally graded nanocomposite cylindrical panels", Polym. Compos., 33(11), 2036-2044. https://doi.org/10.1002/pc.22346
  15. Kaci, A., Tounsi, A., Bakhti, K. and Bedia, E.A.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., Int. J., 12(6), 491-504. https://doi.org/10.12989/scs.2012.12.6.491
  16. Kamarian, S., Pourasghar, A. and Yas, M.H. (2013), "Eshelby-Mori-Tanaka approach for vibrational behavior of functionally graded carbon nanotube-reinforced plate resting on elastic foundation", J. Mech. Sci. Technol., 27(11), 3395-3401. https://doi.org/10.1007/s12206-013-0861-9
  17. Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes", Inter. J. Mech. Sci., 108-109, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006
  18. Kundalwal, S.I. and Ray, M.C. (2013), "Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites", ASME J. Appl. Mech., 80(2), 021010. https://doi.org/10.1115/1.4007722
  19. Lancaster, P. and Salkauskas, K. (1981), "Surface generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  20. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013a), "Buckling analysis of functionally graded carbon nanotubereinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
  21. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  22. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016), "Dynamic stability analysis of carbon nanotubereinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338.
  23. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites, A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  24. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002
  25. Meguid, S.A. and Sun, Y. (2004), "On the tensile and shear strength of nano-reinforced composite interfaces", Mater. Des., 25(4), 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
  26. Mehar, K., Panda, S.K., Dehengia, A. and Ranjan Kar, V. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sand. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
  27. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
  28. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  29. Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22(4), 1062-1075. https://doi.org/10.1177/1077546314539368
  30. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013a), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
  31. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013b), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinf. Plast. Compos., 32(9), 593-601. https://doi.org/10.1177/0731684413476353
  32. Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M. and Bidram, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48, 1901-1913. https://doi.org/10.1177/0021998313491617
  33. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
  34. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
  35. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  36. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC.
  37. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-72.
  38. Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models", Compos. Sci. Technol., 67(10), 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016
  39. Shams, S. and Soltani, B. (2015), "The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method", Polymer Compos. DOI: 10.1002/pc.23814
  40. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube- reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  41. Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B, 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
  42. Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polymer, 47(5), 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
  43. Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  44. Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
  45. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  46. Yas, M.H. and Sobhani Aragh, B. (2010), "Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation", Inter. J. Eng. Sci., 48(12), 1881-1895. https://doi.org/10.1016/j.ijengsci.2010.06.015
  47. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015a), "An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations", Eng. Anal. Bound. Elem., 58, 7-17. https://doi.org/10.1016/j.enganabound.2015.03.004
  48. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015b), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
  49. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010

Cited by

  1. Modeling of thermomechanical properties of polymeric hybrid nanocomposites 2017, https://doi.org/10.1002/pc.24483
  2. Low-velocity impact analysis of carbon nanotube reinforced composite laminates vol.53, pp.1, 2018, https://doi.org/10.1007/s10853-017-1538-z
  3. Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates 2017, https://doi.org/10.1002/zamm.201600209
  4. Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.359
  5. Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2016, https://doi.org/10.12989/scs.2017.24.5.537
  6. Mathematical modelling of the stability of carbon nanotube-reinforced panels vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.727
  7. Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.315
  8. Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
  9. Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.649
  10. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.249
  11. A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.099
  12. Free vibration analysis of polyethylene/CNT plates vol.134, pp.6, 2016, https://doi.org/10.1140/epjp/i2019-12650-x
  13. Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
  14. Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
  15. Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.711
  16. Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes vol.23, pp.3, 2016, https://doi.org/10.1177/1099636219848282
  17. Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.477
  18. Aerodynamic Analysis of Temperature-Dependent FG-WCNTRC Nanoplates under a Moving Nanoparticle using Meshfree Finite Volume Method vol.134, pp.None, 2016, https://doi.org/10.1016/j.enganabound.2021.10.021