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Departamento de Matemática, Faculdade de Ciências Exatas e da Engenharia, Uni-
versidade da Madeira, Portugal
e-mail : lcamacho@uma.pt

Francisco Miguel Diońısio
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Abstract. Using a combination of calculational and theoretical approaches, we establish

results that relate two knot invariants, the Alexander polynomial, and the number of

quandle colourings using any finite linear Alexander quandle. Given such a quandle,

specified by two coprime integers n and m, the number of colourings of a knot diagram is

given by counting the solutions of a matrix equation of the form AX = 0 mod n, where

A is the m-dependent colouring matrix. We devised an algorithm to reduce A to echelon

form, and applied this to the colouring matrices for all prime knots with up to 10 crossings,

finding just three distinct reduced types. For two of these types, both upper triangular,

we found general formulae for the number of colourings. This enables us to prove that in

some cases the number of such quandle colourings cannot distinguish knots with the same

Alexander polynomial, whilst in other cases knots with the same Alexander polynomial

can be distinguished by colourings with a specific quandle. When two knots have different

Alexander polynomials, and their reduced colouring matrices are upper triangular, we find

a specific quandle for which we prove that it distinguishes them by colourings.
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1. Introduction

The theory of knots has a long and rich history, giving rise to a large number of
different invariants coming from many diverse perspectives. For this reason it is very
important to understand the interconnections between different knot invariants,
normally not an easy task. In the present study, using a combination of calculational
and theoretical approaches, we establish results that relate two knot invariants,
namely the classical Alexander polynomial on the one hand, and the number of
quandle colourings using any finite linear Alexander quandle, on the other.

The number of quandle colourings of a knot diagram is a well known and rich
invariant of a knot, introduced independently in [12] and [18] - see also [4] for
a recent survey. An interesting class of quandles are the finite linear Alexander
quandles, which are given by two coprime integers n and m. Thus we can consider
the information contained in the number of such quandle colourings for arbitrary
choices of n and m. A separate invariant of the knot is its Alexander polynomial
[1], and in this article we clarify a number of points about the precise relationship
between these two invariants. Note that if the Alexander polynomial is replaced
by the, much harder to compute, collection of all Alexander polynomials (which
includes the Alexander polynomial of a knot as its first element), then by [11]
this collection completely determines the number of quandle colourings for any
Alexander quandle, linear or otherwise.

Our work started with various attempts to calculate the number of quandle
colourings for specific choices of quandles and particular knots, following on from an
article by one of us with P. Lopes [8]. During this process, certain patterns emerged
which we wanted to understand by means of a systematic approach. We also wanted
to streamline the calculations by finding more efficient algorithms, since even with
clever methods the specific calculations could take a long time. This motivated us
to look for more general and better methods.

Given a finite linear Alexander quandle, the number of quandle colourings of a
knot diagram is given by counting the solutions of a matrix equation of the form
AX = 0, where the entries of the colouring matrix A are Laurent polynomials in
m, and the corresponding linear equations are all taken modulo n. Thus a natural
strategy is to try and reduce A to echelon form. We devised an algorithm (using
the Mathematica programming environment) which does this in such a way as to
preserve a property of the matrix A, namely that its columns add up to zero.
Applying this algorithm to the colouring matrices for all prime knots with up to
10 crossings we found that all the reduced matrices were of just three distinct and
highly specific types, two of which were upper triangular with mostly 1’s on the
diagonal (which we call Type I and Type II), and the third of which was non-
triangular, but upper block triangular, with mainly 1’s on the diagonal along with
a single 2 by 2 non-triangular block. There were only 12 out of 249 prime knots
with up to 10 crossings that gave non-triangular reduced matrices.

Using theoretical methods, we were then able to prove general formulae for the
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number of solutions of AX = 0 as a function of n andm, when the reduced matrix is
of Type I or Type II. We note that whilst various ingenious methods may be used to
find the number of quandle colourings of a knot diagram in particular cases, having
a general formula giving that number is far more powerful (and faster). However
we did use various direct calculations via other methods to check that the number
of colourings given by our formulae were in agreement with those results.

The formulae that we obtained for the Type I or Type II reduced colouring ma-
trices either involve the Alexander polynomial of the knot, or factors of the Alexan-
der polynomial, both evaluated at m (which is not surprising since the Alexander
polynomial is given by the determinant of a minor of A). This opens the way for
proving general results which relate two different invariants: the Alexander poly-
nomial, and the number of quandle colourings using any finite linear Alexander
quandle.

In particular, we can show in many cases that the number of such quandle
colourings cannot distinguish knots with the same Alexander polynomial, confirm-
ing indications coming from previous calculations, which failed to distinguish these
cases, despite using exhaustive batteries of quandles. On the other hand, we find
cases of pairs of knots with the same Alexander polynomial which can be dis-
tinguished by counting quandle colourings for appropriate finite linear Alexander
quandles.

When two knots have different Alexander polynomials, and their colouring ma-
trices can be triangularized (not necessarily only as Type I or Type II matrices),
we prove that they can be distinguished by colourings using a suitable finite linear
Alexander quandle. These include instances which in the light of the previous test
calculations appeared to be indistinguishable by quandle colourings. The quan-
dles that do distinguish them did not show up in the calculations simply because
they were too large. We conjecture that, in general, when two knots have dif-
ferent Alexander polynomials, it is possible to distinguish them with finite linear
Alexander quandle colourings, irrespective of whether their colouring matrices can
be triangularized.

We also use information coming from the Alexander polynomial, namely that
in some cases it is not factorizable into proper factors, to prove that in those cases
it is impossible to reduce the corresponding colouring matrix to triangular form.
Curiously, in some analogous cases with a non-factorizable Alexander polynomial,
the same reasoning fails, since despite the fact that the colouring matrix has a
non-triangular reduced form, in a large number of test calculations the number of
colourings always obeys the formula for a Type I reduced matrix. These and other
issues deserve further investigation by calculational and theoretical means.

The structure of this article is as follows. In section 2 we recall the neces-
sary background for quandles [12, 18] and quandle colourings of knot diagrams
[2, 4, 10, 11, 17, 19], focussing on the case of finite linear Alexander quandles. We
also introduce the colouring matrix A associated to a knot diagram, and its role
both in computing the number of quandle colourings and in getting the Alexander
polynomial [1, 16].

In section 3 we describe our computations which reduce A to specific echelon
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or upper triangular forms, for all prime knots with up to 10 crossings. We observe
that precisely three patterns occur for the reduced matrices: two types of upper
triangular matrices (which we call Type I and Type II) and a non-triangular form
which is which is block upper triangular containing a single non-triangular 2 × 2
block. We employ an algorithm which preserves a useful property of the colouring
matrix, namely that the sum of its columns is equal to zero, but we also describe the
reduction using a more general algorithm and compare all results with an analogous
computation in the literature [15]. We illustrate the computation of the number of
colourings for a specific knot and choice of quandle.

In section 4 we define a notion of equivalence between matrices based on the
operations used in the algorithm of section 3 for reducing A. When the colouring
matrix of a knot diagram is equivalent to a Type I or Type II upper triangular ma-
trix, we prove that the number of quandle colourings, using a finite linear Alexander
quandle specified by two coprime integers m and n, obeys a general formula. These
central results, which use the well-known linear congruence theorem, are given in
Propositions 4.5 and 4.6. Both formulae involve the Alexander polynomial of the
knot, or factors of the Alexander polynomial, evaluated at m.

Section 5 exploits the two formulae for the number of colourings to show that,
in suitable circumstances, the number of quandle colourings using any finite linear
Alexander quandle is no stronger than the Alexander polynomial in distinguishing
knots. In particular we list many cases of knots with up to 10 crossings, which are
indistinguisable by means of such quandle colourings. On the other hand we also
find cases, amongst knots with up to 10 crossings, of pairs of knots with the same
Alexander polynomial, but which can be distinguished by such a quandle colouring.

In section 6 we examine the cases where our calculations reduced the colouring
matrix to a non-triangular form. For five cases we are able to prove that it is
impossible to reduce the colouring matrix to triangular form, by exploiting a feature
of the corresponding Alexander polynomial, namely that it cannot be factorized
into proper factors. We comment on a remarkable phenomenon for a further four
cases, which also have non-factorizable Alexander polynomials, where the number
of colourings agrees with the Type I formula in test calculations, despite the fact
that we were unable to reduce the colouring matrix to Type I form.

Finally, in section 7 we prove that, for a class of knots, the number of quandle
colourings using any finite linear Alexander quandle is as strong an invariant as
the Alexander polynomial when it comes to distinguishing knots. These knots are
those for which the colouring matrix can be reduced to upper triangular form using
the operations of our algorithm - see Proposition 7.3. We conjecture that the same
holds true even when the colouring matrix cannot be reduced to triangular form.
We then give some examples of quandle colourings which distinguish knots with
differing Alexander polynomials.

In section 8 we present some conclusions. The two appendices give the output
of our calculations for prime knots with up to 10 crossings by displaying the relevant
part of the Type II or non-triangularized reduced colouring matrices (for Type I
knots this output is given simply by the corresponding Alexander polynomial for
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which listings already exist).

2. Background

In this section we recall the definition of a quandle and the notion of quandle
coloring of a diagram. Since the knot quandle is a classifying invariant for knots
(introduced independently by Joyce and Matveev - see [12] and [18]), the number
of quandle colorings associated to a knot diagram, for any fixed quandle, is a knot
invariant. Below we also present the notions of finite Alexander quandle, Alexander
polynomial and linear finite Alexander quandle.

2.1. Quandles and colourings

Colourings of the arcs of oriented knot diagrams with elements of a quandle
generalize mod p labellings of the arcs, that, in turn, generalize the colorability
invariant of R. Fox (with p = 3 colours). They are also a generalization of arc
labellings of oriented knot diagrams with group elements (see, for instance [16]).
At each crossing the quandle elements labelling the arcs are related by the quandle
operation ∗. The number of colourings is a knot invariant since different diagrams
of the same knot have the same number of colourings using a given quandle. Indeed,
the definition of a quandle consists of precisely those properties of the binary op-
eration ∗ that ensure that colourings are preserved under the Reidemeister moves.

Definition 2.1. (Quandle) A quandle is a set X endowed with a binary operation,
denoted ∗, such that:

(a) for any a ∈ X, a ∗ a = a

(b) for any a and b ∈ X, there is a unique x ∈ X such that a = x ∗ b. This
element x is denoted by a ∗′ b.

(c) for any a, b and c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c)

We may use the elements of a quandle to colour the arcs of a knot diagram.

Definition 2.2. (quandle colouring of a knot diagram) Let X be a fixed

finite quandle, K a knot (assumed to be oriented),
→
D a diagram of K and R→

D
the

set of arcs of
→
D. A quandle colouring of a diagram

→
D is a map C : R→

D
−→ X such

that, at each crossing:

��
r 7→y

��
r1 7→x

��
r2 7→x∗y

��
r1 7→x

��
r3 7→x∗′y

��
r 7→y

i.e. if C(r1) = x and C(r) = y, then C(r2) = x ∗ y for the crossing on the left,
and if C(r1) = x and C(r) = y, then C(r3) = x ∗′ y for the crossing on the right.
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Colourings of knot diagrams using quandles are knot invariants in the following
sense.

Theorem 2.3. Let X be a fixed finite quandle, K a knot and D and D′ oriented
diagrams of K. Then the number of colourings C : RD −→ X is equal to the number
of colourings C ′ : RD′ −→ X.

For a more complete discussion of the results above and related topics see [4,
11, 13, 17, 19].

2.2. Finite Alexander quandles
Finite Alexander quandles have the form Zn[t, t

−1]/h(t) where n is an integer
and h(t) is a monic polynomial in t. These quandles have as elements equivalence
classes of Laurent polynomials with coefficients in Zn, where two polynomials are
equivalent if their difference is divisible by h(t). The quandle operation is

(2.1) a ∗ b = ta+ (1− t)b.

Note that this means equality of quandle elements, i.e. equivalence classes of Laurent
polynomials. Recall that c = a ∗′ b is defined to mean the same as a = c ∗ b. From
this it follows easily that

(2.2) a ∗′ b = t−1a+ (1− t−1)b.

For finite Alexander quandles the colouring condition at each crossing states
that the label of the emerging arc is expressed as a linear combination of the labels of
the other two arcs. Therefore one uses matrices to organize the colouring conditions
(equations).

For that purpose we need an enumeration of the arcs and the crossings. Any
enumeration will do, but to fix ideas we describe one possibility. We choose a
starting arc, labelled 1, and use an enumeration that assigns i+ 1 to the emerging
arc where i is the number assigned to the incoming arc (see figure below), except
for the last crossing when the emerging arc is already labelled (by 1). For crossings
we use the enumeration suggested by the enumeration of arcs, i.e. the k-th crossing
is the one with under arc also labelled k.

��
j

��
i

��
i+1

��
j

��
j+1

��
i

Let Xk be the label (in the quandle) of arc k. Then the colouring conditions of
Definition 2.2, using (2.1) and (2.2), applied to the figure below:

��
Xj

��
Xi

��
Xk=Xi∗Xj

��
Xj

��
Xk=Xj∗′Xi

��
Xi
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are, respectively,

Xk = tXi + (1− t)Xj

Xk = t−1Xj + (1− t−1)Xi

The second condition Xk = Xj ∗′ Xi is equivalent to Xj = Xk ∗ Xi, i.e. Xj =
tXk + (1 − t)Xi, and thus the colouring conditions for the crossings in the figure
above can also be expressed as:

tXi + (1− t)Xj −Xk = 0

(1− t)Xi −Xj + tXk = 0

It may happen that two of the arcs labelled i, j, k at a crossing are actually the
same arc, e.g. i = j. In this case, the corresponding terms in the equations above
are combined.

Thus, given an oriented diagram D of a knot K, we can write the colouring
conditions as a matrix equation

AX = 0

where X is the vector of colouring unknowns (X1, X2, . . . , Xi, . . . ) and each row in
the matrix A represents a colouring condition for one crossing in D.

Obviously the number of colourings of a diagram in a linear Alexander quandle
is the number of solutions of AX = 0. We will call the matrix A a colouring matrix.

For example,
−1 t 0 1− t
1− t t −1 0
0 1− t −1 t
−1 0 1− t t



X1

X2

X3

X4

 =


0
0
0
0


is the matrix equation corresponding to the following diagram of the knot 41 (the
figure-8 knot):

3

4

�� 1 2



1024 Camacho, Diońısio and Picken

Remark 2.4 We note for future reference that the sum of the columns of any
colouring matrix is the zero column (this is obvious from the coefficients in the
colouring conditions).

2.3. The Alexander polynomial
The Alexander polynomial AlexK(t) [1] of a knot K is a knot invariant that may

be computed in a number of ways. We will follow the approach by Livingston [16].
First choose a diagram for K and pick an orientation for that diagram; we denote
the oriented diagram by D. Enumerate the arcs of the diagram, and separately
enumerate the crossings. If the number of crossings is 0, i.e. K is the unknot O, we
define the Alexander polynomial to be AlexO(t) = 0. Otherwise, define an N ×N
matrix, where N is the number of crossings (and arcs) in the diagram, according to
the following procedure.

Any crossing is of one of two types:

j

??

i

k

__

j

k

??

i

__

• If the crossing numbered l is like the diagram on the left above, enter t in
column i of row l, enter 1− t in column j of that row, and enter −1 in column
k of the same row.

• If the crossing numbered l is like the diagram on the right above, enter 1− t
in column i of row l, enter −1 in column j of that row, and enter t in column
k of the same row.

• An exceptional case occurs if any of i, j or k are equal. In this case the sum
of the entries described above is put in the appropriate column.

• All of the remaining entries of row l are 0.

Remark 2.5. Notice that the matrix thus obtained is exactly the same as the
colouring matrix A from the previous subsection, assuming we use the same enu-
merations for arcs and crossings. The only difference is the orientation convention
used in the two procedures. In any case, the Alexander polynomial, to be defined
next, is independent of all choices, including the choice of orientation for the dia-
gram.

As we have noted before, the sum of the columns of A is the zero column,
i.e. the determinant of A is 0. The Alexander polynomial is essentially obtained by
removing the final column and row of A to obtain a reduced matrix Ar, which is non-
singular, and taking its determinant. However different choices for the enumerations
and orientation may lead to different polynomials, which however are always related
by multiplying by a sign or an integer power of t. Thus the Alexander polynomial
in the definition to follow is, in fact, an equivalence class of polynomials.
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Definition 2.6. (from [16]) The (N−1)×(N−1) matrix Ar obtained by removing
the final row and column from the N × N matrix A described above is called the
Alexander matrix of K. The determinant of the Alexander matrix is called the
Alexander polynomial of K, regarded up to equivalence, where two polynomials are
equivalent if they are obtained from each other by multiplying by a sign and/or by
an integer power of t. It is customary to normalize the Alexander polynomial ([7])
by choosing the representative with no negative powers of t and a positive constant
term.

Example 2.7. Applying the definition to the colouring matrix for the knot 41 from
the previous subsection, the Alexander polynomial is −1+3t− t2, or in normalized
form 1− 3t+ t2.

3. Computations with Linear Finite Alexander Quandles

From now on we will be concentrating on quandle colourings using a special
class of quandles, called linear finite Alexander quandles. These are finite Alexander
quandles (see subsection 2.2), of the form Zn[t, t

−1] / (t −m), where n and m are
integers and n,m are coprime. Recall that the elements are equivalence classes of
Laurent polynomials having the same remainder when divided by t−m. Obviously
the polynomial t is in the same equivalence class as the constant polynomial m,
since t = (t−m) +m. Similarly t−1 is equivalent to m−1 (the inverse of m in Zn),
since t−1−m−1 = −m−1t−1(t−m). (Note thatm is invertible since gcd(m,n) = 1).
It follows that any polynomial is equivalent to some number in Zn and that one
can identify Zn[t, t

−1] / (t−m) with Zn. The quandle operation can be written as
a ∗ b = ma+ (1−m)b (mod n) and a ∗′ b = m−1a+ (1−m−1)b (mod n).

Thus the colourings of any knot diagram with elements of a linear finite Alexan-
der quandle are the solutions of the matrix equation

AX = 0,

where A is the colouring matrix of subsection 2.2 with t replaced by m, X is the
vector of colouring unknowns (X1, X2, . . . , Xi, . . . ), belonging to Zn, and equalities
hold in Zn (i.e. equality mod n).

In this section, we describe computations that we carried out in order to solve
this equation, using two slightly different algorithms, and we compare the results
with an analogous computation in the literature. We also give an example of cal-
culating the number of colourings for a specific choice of m and n. The colouring
matrices were obtained from Rolfsen’s standard knot diagrams [21]. Thus when we
refer to the colouring matrix of a knot K, we mean the colouring matrix obtained
from the diagram of K in this list.

3.1. Reduction of A - first algorithm
In order to solve the equation AX = 0 for general m and n, we wrote algorithms

in Mathematica that reduce the colouring matrix to a standard echelon form1. The

1The source code is available on request from the first author.
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operations used in this reduction process were of four types:

1) multiplying rows by −1, m and m−1

2) adding rows
3) swapping rows
4) swapping columns

Note that these operations all preserve the property that the sum of the columns
of the matrix is the zero vector, a feature that will be useful in the next section
when we derive general expressions for the number of colourings for certain classes
of knots. The algorithms were also designed to yield as output an echelon matrix
such that, eliminating the final row and column and taking the determinant, gives
the Alexander polynomial in normalized form, a feature that will be exploited later
on.

Applying these algorithms to the prime knots with up to 10 crossings, we re-
duced their colouring matrices to three kinds of echelon form, which we call Type
I, Type II and non-triangular.

Type I matrices: These are upper triangular, with 1’s on the diagonal except
in the penultimate row where the entry is denoted α(m), and in the last row which
has all entries equal to zero. The entry α(m) is the normalized Alexander polynomial
of the knot for t equal to m.

Type I

1 λ12(m) · · · · · · λ1N (m)

0
. . .

. . . · · ·
...

... 0 1 λN−2 N−1(m) λN−2 N (m)

...
... 0 α(m) −α(m)

0 0 · · · · · · 0


Type II matrices: These are upper triangular, with 1’s on the diagonal except

in the antepenultimate and penultimate rows, where the diagonal entries are denoted
α1(m) and α2(m), respectively, and in the last row which has all entries equal to
zero. The product α1(m)α2(m) is the normalized Alexander polynomial of the knot
for t equal to m.

Type II

1 λ12(m) · · · · · · · · · λ1N (m)

0
. . .

. . . · · · · · ·
...

... 0 1 λN−3 N−2(m) λN−3 N−1(m) λN−3 N (m)

...
... 0 α1(m) β1(m) −(α1(m) + β1(m))

...
...

... 0 α2(m) −α2(m)
0 0 0 · · · · · · 0
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Non-triangular matrices: These are just like Type II matrices, except for re-
placing the triangular 2× 2 array

(2.1)

[
α1(m) β1(m)

0 α2(m)

]
with a non-triangular 2 × 2 array, which has determinant equal to the normalized
Alexander polynomial.

We now summarize the results of our computations.

Type I The vast majority of colouring matrices for knots with up to 10 crossings
could be reduced to a matrix of Type I. We do not list these 216 knots, or the special
entry α(m), since it is just the corresponding normalized Alexander polynomial with
t equal to m.2

Type II There were 21 colouring matrices that could be reduced to Type II
matrices, namely those coming from the following knots:

818; 937; 940; 946; 1061; 1063; 1065; 1074; 1075; 1098; 1099; 10103;

10106; 10122; 10123; 10140; 10142; 10144; 10147; 10155; 10164

In Appendix A we list their characteristic 2 by 2 arrays.

Non-triangular Finally there were 12 colouring matrices that could be reduced
to the non-triangular echelon form described above. These came from the following
knots:

935; 938; 941; 947; 948; 949; 1069; 10101; 10108; 10115; 10157; 10160

In Appendix B we list their characteristic 2 by 2 arrays.

Remark 3.1. Using the general results that will be developed starting in the next
section, we were able to prove (in section 6), that for some of these cases (corre-
sponding to the 5 knots 935, 947, 948, 949 and 10157) it is impossible to triangularize
the colouring matrix into Type I or Type II form. This shows that, at least in these
cases, the absence of a triangular form is not due to some shortcoming in the algo-
rithm. In the same section, we also conjecture that it is impossible to triangularize
the colouring matrices for a further 4 knots, 1069, 10101, 10115 and 10160, on the basis
of the fact that they have non-factorizable Alexander polynomials. As regards the
distinction between Type I and Type II, in the next section we will provide general
formulae for the number of colourings using any linear Alexander quandle, for knots
with colouring matrices that reduce to Type I or Type II matrices. Therefore, for
this purpose it is irrelevant if a Type II matrix may be further simplified to Type
I, since a formula exists in either case.

2For up to 9 crossings these are listed in Livingston [16]. For up to 10 crossings they
are given in shorthand form in Rolfsen [21] or Kawauchi [15], e.g. for the knot 63, Rolfsen
gives [5 − 3 + 1 , meaning that the Alexander polynomial is m−2 − 3m−1 + 5− 3m+m2

or in normalized form 1− 3m+ 5m2 − 3m3 +m4.
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3.2. Reduction of A - second algorithm
As noted earlier, in reducing the colouring matrices to echelon form, we re-

stricted ourselves to operations which preserve the sum of the columns (equal to
zero). For the purpose of obtaining the number of solutions, i.e. colourings, rather
than the solutions themselves, there is no need to exclude more general column
operations, such as summing columns and multiplying columns by −1, m and m−1.
We developed a second algorithm, allowing these more general column operations,
as well as the previous operations. In this way, some of the colouring matrices could
be reduced to a simpler type compared to the first algorithm, as follows:

1) The colouring matrices corresponding to knots 10106 and 10147, which for-
merly could only be reduced to Type II matrices, can be reduced to Type I matrices
with more general column operations.

2) The colouring matrices corresponding to knots 941 and 10108, which formerly
could only be reduced to non-triangular matrices, can be reduced to a Type II
matrix and a Type I matrix, respectively, with more general column operations.

3.3. Comparison with presentation matrices
It is worthwhile to compare our results with Kawauchi’s presentation matrices

[15], since these are also obtained from colouring matrices by simplification oper-
ations, which include the row operations and column swaps of our algorithm, as
well as more general operations, in particular on columns, and other operations
which can reduce the size of the matrix. The presentation matrices obtained by
Kawauchi for the colouring matrices coming from prime knots with up to 10 cross-
ings are either 1× 1, comparable to the special diagonal entry α(m) in our Type I
reduced matrices, or 2×2, comparable to the special 2×2 arrays in our Type II and
non-triangular reduced matrices. The 29 latter cases are listed in Appendix F.4 of
[15]. To a very large extent, we find a correspondence between our Type I, Type II,
and non-triangular reduced matrices, and Kawauchi’s 1× 1, upper triangular 2× 2,
and non-triangular 2× 2 presentation matrices, respectively. The only six cases for
which a discrepancy occurs are listed below:

1065, 10106, 10147 Type II 1× 1
938, 941 nontriang. 2× 2 upp. triang.
10108 nontriang. 1× 1

When more general column operations are allowed, as in subsection 3.2, the only
discrepancies that persist correspond to two knots, 938 and 1065. We emphasize
once more that the operations allowed in obtaining presentation matrices are more
general than the operations in our algorithms, so there is no inconsistency.

3.4. The number of colourings for a specific m and n
Having reduced the colouring matrices to echelon form, obtaining the number

of colourings for any specific choice of m and n becomes a simple calculational task.
We give an example below that can be solved by hand, before proceeding in the next
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section to develop powerful general methods for obtaining the number of colourings
for arbitrary m and n.

For the knot 935 our program gave as output the following non-triangular ech-
elon matrix: 

1 h1j · · · · · · · · · h1r

0
. . .

. . . · · · · · ·
...

... 0 1 hr−3 r−2 hr−3 r−1 hr−3 r

...
... 0 2−m −1−m −1 + 2m

...
...

... −3 −2 + 7m 5− 7m
0 0 0 0 0 0


If we choose m = 2 and n = 3, we get a matrix with the 3 final rows consisting only
of zeros, after reducing modulo 3. Thus, for this case, the number of colourings is
equal to 33 = 27, since we can choose the final 3 unknowns, X7, X8 and X9, freely
in Z3, and the remaining unknowns are uniquely determined after this choice.

4. Formulae for the Number of Colourings

Recall from section 2 that for an N×N matrix A, we denote by Ar the reduced
(N − 1) × (N − 1) matrix with the last row and column of A removed. If K
is a knot and A is the colouring matrix coming from a diagram of K, then the
Alexander polynomial is defined to be the determinant of Ar, i.e. AlexK = |Ar|, up
to equivalence (see Def. 2.6).

Definition 4.1. Let A and B be N ×N matrices with entries in Zn[m,m
−1]. We

say B is equivalent to A iff the following two conditions hold:

1) B is obtained from A by a sequence of the following operations:

a) multiplication of a row by m, m−1 or −1; b) replacing a row by its sum
with some row; c) swapping two rows; d) swapping two columns,

2) |Ar| = |Br|, up to equivalence.

Remark 4.2. This is an equivalence relation since, for 1), all operations a)-d) can
be inverted using the same operations, and for 2), it is obvious. Note that if A
is the colouring matrix of some knot, or a matrix obtained from such a colouring
matrix by means of operations a)-c), then a column swap d) will automatically
satisfy the condition 2): since the sum of the columns is zero, it is easy to see that
|Ar| = −|Br|, i.e. |Ar| = |Br| up to equivalence, for column swaps involving any of
the columns including the last one.

Definition 4.3. A knot is said to be of Type I, or of Type II, if the colouring
matrix of one of its diagrams is equivalent to a matrix of the corresponding type.
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A result that we will use several times is the well known linear congruence
theorem.

Proposition 4.4. If a and b are integers and n is a positive integer, then the
congruence ax = b mod n has a solution for x if and only if b is divisible by the
greatest common divisor of a and n, d = gcd(a, n). When this is the case, and x0 is
a solution of ax = b mod n, then the set of all solutions is given by {x0+k n

d , k ∈ Z}.
In particular, there will be exactly d = gcd(a, n) solutions in the set {0, ..., n− 1}.

When a knot is Type I, it is possible to find a general expression for the number
of linear quandle colourings, using an arbitrary linear quandle, as the following
proposition shows.

Proposition 4.5. Let K be a Type I knot, and Q be the linear finite Alexander
quandle Q = Zn[t, t

−1]/(t−m). Then CQ(K), the number of Q-colourings of K, is

CQ(K) = n× gcd(AlexK(m), n).

Proof. By assumption the N ×N colouring matrix A of K is equivalent to a matrix
B of Type I form (see Section 3.1). This may be expressed as follows: there exist
N ×N matrices C and P , with C non-singular and P a permutation matrix, such
that

CAP = B

The matrix C captures the row operations a) - c), and the matrix P captures
the column operations d) of Definition 4.1. Thus the equation AX = 0 is equiv-
alent to the equation BX ′ = 0, where X ′ = P−1X, and hence there is a one-
to-one correspondence between their respective sets of solutions. We solve the
latter equation by solving first for X ′

N , then for X ′
N−1, and so on. X ′

N satisfies:
0X ′

N = 0 mod n, thus there are n solutions for X ′
n in Zn. For X ′

N−1 we have the
equation α(m)(X ′

N−1 − X ′
N ) = 0 mod n, and thus, by proposition 4.4, there are

d = gcd(α(m), n) solutions for X ′
N−1, namely X ′

N−1 = X ′
N + k n

d , k = 0, ..., d − 1.
Recall that α(m) is the normalized Alexander polynomial of K, AlexK(m). The
remaining unknowns, X ′

N−2, . . . X
′
1 each have a unique solution in terms of X ′

N and
X ′

N−1. In conclusion, the number of solutions of AX = 0, i.e. CQ(K), is given by
the product of n and gcd(AlexK(m), n). 2

Remark 4.6. An immediate consequence of proposition 4.5 is that Type I knots
with the same Alexander polynomial cannot be distinguished by colourings of finite
linear Alexander quandles. We will make a more detailed statement in the next
section.

For Type II knots the process of calculating the number of solutions is similar
to that of Type I knots. In this case, apart from the equations coming from the
final two rows of the Type II matrix (see Section 3.1), a third equation has to be
considered.
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Proposition 4.7. Let K be a Type II knot, and Q be the linear finite Alexander
quandle Q = Zn[t, t

−1]/(t−m). Then CQ(K), the number of Q-colourings of K, is

CQ(K) = n× gcd(α2(m), n)× gcd(β1(m)
n

gcd(α2(m), n)
, gcd(α1(m), n)).

Proof. As in the proof of the previous proposition, there exist matrices C and P ,
with C non-singular and P a permutation matrix, such that CAP = B, where B
is of Type II form, and hence the equation AX = 0 is equivalent to the equation
BX ′ = 0, where X ′ = P−1X. Following the reasoning of the previous proposition,
the number of solutions of the equations corresponding to the final two rows of B,
involving only X ′

N and X ′
N−1, is n.d2, where d2 = gcd(α2(m), n). These solutions

are X ′
N = 0, 1, . . . n− 1,mod n and X ′

N−1 = X ′
N + k n

d2
,mod n, k = 0, ..., d2 − 1.

The row of B above the final two rows yields the equation α1(m)X ′
N−2 +

β1(m)X ′
N−1 − (α1(m) + β1(m))X ′

N = 0 mod n, that can be rewritten as
α1(m)(X ′

N−2−X ′
N )+β1(m)(X ′

N−1−X ′
N ) = 0 mod n. Letting YN−2 = X ′

N−2−X ′
N

and YN−1 = X ′
N−1 −X ′

N we obtain

α1(m)YN−2 + β1(m)YN−1 = 0 mod n

From before we have YN−1 = k n
d2
, for k = 0, ..., d2 − 1. Substituting above one

obtains α1(m)YN−2 + β1(m)k n
d2

= 0 mod n. This equation only has solutions for
those values of k such that β1(m)k n

d2
is divisible by d1 = gcd(α1(m), n). And, if

there is one solution then there will be d1 solutions.

We check how many of the values β1(m)k n
d2

for k = 0, ..., d2 − 1 are multiples
of d1. This is equivalent to β1(m) n

d2
k = 0 mod d1 that has d3 = gcd(β1(m) n

d2
, d1)

solutions and these are k = t× d1

d3
for t = 0, ..., d3− 1. Now we have to check which

of these k′s are in 0, ..., d2 − 1, i.e. such that t × d1

d3
< d2. It is easy to check that

there are c3 = d2 × d3

d1
possible values for t namely 0, ..., c3 − 1. Therefore there are

c3 values of k such that β1(m)k n
d2

is a multiple of d1.

Summing up we have that for each value of X ′
N in {0, ..., n − 1} there will be

d2 = gcd(α2(m), n) values forX ′
N−1 that are solutions of the final equations but only

c3 = d2 × d3

d1
of them lead to solutions for X ′

N−2. Each of these, however, gives d1
solutions forX ′

N−2. Therefore there are n×c3×d1 solutions since the otherX ′
js with

j < N − 2 are uniquely determined by the values of these three. Substituting one
gets CQ(K) = n×d2× d3

d1
×d1 = n×d2×d3 = n×gcd(α2(m), n)×gcd(β1(m) n

d2
, d1) =

n× gcd(α2(m), n)× gcd(β1(m) n

gcd(α2(m),n)
, gcd(α1(m), n)). 2

Example 4.8. For the knot 818 and choosing the quandle Z15[t, t
−1]/(t − 8) (i.e.

m = 8 and n = 15), the significant 2× 2 block of the Type II matrix B is: .[
3 6
0 12

]
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The number of colourings is given by

n× gcd(α2(m), n)× gcd(β1(m)
n

gcd(α2(m), n)
, gcd(α1(m), n)).

Substituting one obtains 15 × gcd(12, 15) × gcd(6 15

gcd(12,15)
, gcd(3, 15)) = 15 × 3 ×

gcd(6× 5, 3) = 15× 3× 3. The number of colourings is 135.

Remark 4.9. Note that we could extend these results to more general triangular
matrices. In that case, however, it is difficult to find an expression for the solutions,
and, therefore for the number of solutions. A general algorithm could work by
finding the solutions for Xi using previous solutions of Xj , with j > i. For each
equation it is easy to check what values of the previous Xj ’s give solutions (the
independent term must be a multiple of the gcd of the entry on the diagonal and
n). The solutions themselves, that are needed for rows above, can be computed
with the extended Euclidean algorithm (available in some computer systems, such
as Mathematica). We have written such a program and it agrees with the values
for Type I and II matrices. However, for prime knots up to 10 crossings this is not
relevant because such more general triangular matrices do not occur.

5. Comparing Knots with the Same Alexander Polynomial

The results of the previous section open the way for making comparisons be-
tween two separate knot invariants: the Alexander polynomial, on the one hand,
and the number of quandle colourings for any linear Alexander quandle, on the
other. In this section we will focus on the case where two knots have the same
Alexander polynomial, and investigate whether or not they can be distinguished by
linear Alexander quandle colourings (see Section 7 for the case where the Alexander
polynomials are different). Our first statement is a direct corollary of propositions
4.5 and 4.6.

Corollary 5.1. A pair of Type I knots with the same Alexander polynomial cannot
be distinguished by counting linear Alexander quandle colourings. Likewise, a pair
of Type II knots with the same characteristic triangular 2×2 array (2.1), hence the
same Alexander polynomial, cannot be distinguished by counting linear Alexander
quandle colourings.

Thus, from our calculations for knots with up to 10 crossings, we can list pairs
of knots, and even one triple of knots, which are indistinguishable by counting
linear Alexander quandle colourings. These cases all involve Type I knots, since our
calculations produced no examples of Type II pairs with the same characteristic
triangular array.

51, 10132; 74, 92; 75, 10130; 76, 10133; 83, 101; 85, 10141; 88, 10129; 810, 10143;
816, 10156; 821, 10136; 915, 10166; 920, 10149; 928, 929; 1010, 10165; 1012, 1054;

1018, 1024; 1020, 10163; 1023, 1052; 1025, 1056; 1028, 1037; 1031, 1068;
1034, 10135; 10127, 10150; 814, 98, 10131.
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It is also interesting to understand if knots with the same Alexander polyno-
mial, but different types of reduced colouring matrix can be distinguished by linear
quandle colourings. Our calculations give a number of examples, mainly Type I -
Type II pairs, but also one case of a non-triangular - Type II pair (938 and 1063).
We start by considering pairs of knots where one of the colouring matrices reduces
to Type I and the other to Type II. First there are a number of cases of such pairs
that can be distinguished by counting linear quandle colourings, simply by finding
values for n and m that give a different number of colourings in the two formulae of
Propositions 4.5 and 4.6. The following proposition gives the result of this search.

Proposition 5.2. The following pairs of knots, where the first knot is Type I and
the second is Type II, have the same Alexander polynomial but can be distinguished
by counting linear Alexander quandle colourings, using a quandle with n and m as
specified below:

61, 946 (n = 3,m = 2); 89, 10155 (n = 5,m = 4);
924, 818 (n = 6,m = 5); 1040, 10103 (n = 5,m = 4);
1042, 1075 (n = 3,m = 2); 1059, 940 (n = 5,m = 4);
1067, 1074 (n = 3,m = 2); 1087, 1098 (n = 3,m = 2).

However, it is not always possible to distinguish by linear quandle colourings
knots that have the same Alexander polynomial and are of different types, as the
following proposition shows.

Proposition 5.3. The knots 820 (Type I) and 10140 (Type II) have the same
Alexander polynomial and cannot be distinguished by counting linear Alexander
quandle colourings.

Proof. Both knots have the same Alexander polynomial Alex(m) = (1−m+m2)2 =
1 − 2m + 3m2 − 2m3 +m4. Since 820 is Type I the number of colourings in any
linear Alexander quandle is given by C1(m,n) = n× gcd(Alex(m), n). The relevant
entries (2.1) for the Type II matrix of 10140 are[

1−m+m2 −2m2

0 1−m+m2

]
Therefore the number of colourings of 10140 using any linear Alexander quandle

is given by C2(m,n) = n × gcd(α(m), n) × gcd(β(m) n

gcd(α(m),n)
, gcd(α(m), n)),

where α(m) = 1−m+m2 and β(m) = −2m2.

We now show that C2(m,n) = C1(m,n). Since α(m) = 1 − m + m2 =
m(m − 1) + 1 is odd and m and n are coprime then β(m) = −2m2 is also
coprime with gcd(α(m), n). Therefore gcd(β(m) n

gcd(α(m),n)
, gcd(α(m), n)) =

gcd( n

gcd(α(m),n)
, gcd(α(m), n)). Recall that a × gcd(b, c) = gcd(a × b, a × c)

with a ≥ 1 and note that gcd(gcd(a, n)2, n) = gcd(a2, n). Indeed, gcd(a2, n) =
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gcd( a2

gcd(a,n)2
gcd(a, n)2, n) = gcd(( a

gcd(a,n)
)2gcd(a, n)2, n) = gcd(gcd(a, n)2, n)

since a

gcd(a,n)
and n are coprime. Therefore

C2(m,n) = n× gcd(α(m), n)× gcd( n

gcd(α(m),n)
, gcd(α(m), n))

= n× gcd(n, gcd(α(m), n)2)
= n× gcd(α(m)2, n)
= n× gcd(A(m), n) = C1(m,n),

since α(m)2 is the Alexander polynomial Alex(m). 2

Finally we mention the short remaining list of pairs of knots with the same
Alexander polynomial and different types of reduced colouring matrices, which we
could not distinguish by counting linear Alexander quandle colourings, despite using
a battery of thousands of linear quandles.

Type I - Type II: 1077, 1065; 928, 10164; 929, 10164; 811, 10147
Non-triang. - Type II: 938, 1063.

Thus we conjecture that they cannot be distinguished by linear quandles, al-
though we have been unable to prove this using arguments like in Proposition 5.3.

6. Non-triangularizability Results

Our results so far clearly depend on knowing the type of matrix to which the
colouring matrix can be reduced, using the operations of Definition 4.1. To show
that a knot is, say, Type I, is a priori a calculational property, but to show that it is
not of Type I can sometimes be proved, as we will see in this section. The reason we
can do this is by noticing that some knots have Alexander polynomials that cannot
be factorized in any non-trivial way. This means that, if the colouring matrix of
such a knot is equivalent to a triangular matrix, the knot has to be of Type I, since
there cannot be more than one non-trivial diagonal entry in the reduced triangular
matrix. If, however, a linear quandle can be exhibited for which the number of
colourings disagrees with the Type I formula of Proposition 4.5, then the knot
cannot be of Type I, hence its colouring matrix is necessarily non-triangularizable.

We use this approach to prove that the colouring matrices of five of the twelve
knots for which our calculations gave a non-triangular reduced matrix, namely 935,
947, 948, 949 and 10157, are indeed non-triangularizable. Curiously, a similar line of
thinking should apply to four more knots, 1069, 10101, 10115 and 10160, since they
also have Alexander polynomials that do not factorize. However, we were unable
to find linear quandles that could serve as counter examples. We comment on this
at the end of the section.

We start by looking for Alexander polynomials that are not factorizable, i.e.
cannot be written as products of other polynomials in a non-trivial way.

Definition 6.1. An Alexander polynomial Alex(m) with integer coefficients is
said to be properly factorizable if the corresponding normalized form is properly
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factorizable. A polynomial (in non-negative powers of m) is properly factorizable if
it can be written as the product of integer polynomials not equal to ±1 or ± itself.

Note, for example, that 4 + 2m2 = 2(2 + m2) is properly factorizable. The
following example illustrates the fact that polynomials with non-integer roots may
be properly factorizable.

Example 6.2. The polynomial 8 − 2m2 −m4 has roots m = ±2i, ±
√
2, none of

which are integer. However, it can be written as the product of integer polynomials
since 8 − 2m2 −m4 = −(m − 2i)(m + 2i)(m −

√
2)(m +

√
2) = (4 +m2)(2 −m2).

Therefore it is properly factorizable.

We now show that there are Alexander polynomials that are not properly fac-
torizable.

Proposition 6.3. The Alexander polynomials for the knots 935, 947, 948, 949, 1069,
10101, 10115, 10157 and 10160 are not properly factorizable.

Proof. The normalized Alexander polynomial of the knot 935 is Alex935(m) =
7 − 13m + 7m2. Its roots are r1 = 1

14

(
13− 3i

√
3
)
and r2 = 1

14

(
13 + 3i

√
3
)
. The

original polynomial is 7 × (m − r1) × (m − r2) and it is not possible to multi-
ply these factors to yield integer polynomials other than Alex935(m). Therefore
Alex935(m) = 7− 13m+ 7m2 is not properly factorizable.

The proof for the other knots is similar. We found their roots using Mathematica
and tested the finite products of (m−ri) multiplied by the coefficient of the highest
degree monomial of m. Only the products including all the (m− ri) factors yielded
an integer polynomial (the original polynomial) and all other products did not yield
integer polynomials.3 Here we list only the Alexander polynomials and omit the
calculations.

• 947 (1− 4m+ 6m2 − 5m3 + 6m4 − 4m5 +m6)

• 948 (1− 7m+ 11m2 − 7m3 +m4)

• 949 (3− 6m+ 7m2 − 6m3 + 3m4)

• 1069 (1− 7m+ 21m2 − 29m3 + 21m4 − 7m5 +m6)

• 10101 (7− 21m+ 29m2 − 21m3 + 7m4)

• 10115 (1− 9m+ 26m2 − 37m3 + 26m4 − 9m5 +m6)

• 10157 (1− 6m+ 11m2 − 13m3 + 11m4 − 6m5 +m6)

• 10160 (1− 4m+ 4m2 − 3m3 + 4m4 − 4m5 +m6)

2

3Substituting m with values 0 and 1 non-integer values were obtained.
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We now show that in the case of knots with Alexander polynomials that are
not properly factorizable, if their colouring matrices are triangularizable then they
are equivalent to a Type I matrix.

Proposition 6.4. Let K be a knot and let AlexK(m) be its Alexander polynomial.
Assume that AlexK(m) is not properly factorizable and that the colouring matrix
for K can be reduced to an equivalent triangular matrix. Then K is Type I.

Proof. Let A denote the triangular matrix which is equivalent to the colouring
matrix of K. We show first that it is possible to transform A in such a way that
all entries on the diagonal (except the final one that is 0) are either 1 or AlexK(m).
Recall that the entries in each row of the colouring matrix add up to zero. Since
the operations that transformed the original colouring matrix into the triangular
matrix A preserve this property, we know that the entries in each row of A add up
to zero. Since A is assumed to be triangular its final row must consist only of zeros.
This row will be left unchanged. Let N be the number of rows (and columns) of A.
Each remaining diagonal entry is a polynomial inm andm−1 and the product of the
entries on the diagonal except for the final row is ΠN−1

i=1 aii = ±mkAlexK(m), the
Alexander polynomial possibly multiplied by ±mk. Since AlexK(m) is not properly
factorizable, none of the diagonal entries can be a proper factor and they are either
aii = ±mki or aii = ±mkiAlexK(m) (this case can occur only once). Now multiply
each row by ±m−ki .

Next swap the column where AlexK(m) occurs with the penultimate column
and then the row where AlexK(m) occurs with the penultimate row. The non-
zero entries below the diagonal can be changed to zero by repeatedly adding to
the corresponding row suitable multiples of the rows above where 1 occurs in the
diagonal. Therefore the final matrix is Type I. 2

Now we show that some colouring matrices cannot be triangularized.

Proposition 6.5. The colouring matrices of the knots 935, 947, 948, 949 and 10157
cannot be triangularized.

Proof. Since these knots have non-properly factorizable Alexander polynomials we
know that if they have a triangular colouring matrix then the number of colourings
using any linear Alexander quandle Zn[t, t

−1] / (t−m) must be given by the Type
I formula n × gcd(AlexK(m), n) of Proposition 4.5. The proof consists now in
exhibiting for each such knot K a quandle for which the true number of colourings
is not equal to n× gcd(AlexK(m), n).

935. We have seen in section 3.4 that for m = 2 and n = 3 the number of
colourings of the knot 935 is 27. Its Alexander polynomial is 7 − 13m + 7m2 and
is not properly factorizable. The number of colourings computed using the Type I
formula is, however, 3× gcd(7− 26 + 28, 3) = 3× gcd(9, 3) = 3× 3 = 9.

947. We look for colourings using the quandle given by m = 2, n = 3. For
m = 2 the Alexander polynomial 1 − 4m + 6m2 − 5m3 + 6m4 − 4m5 + m6 is 9.
Thus the number of colourings computed from the Type I formula for 947 would be
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3× gcd(9, 3) = 3× 3 = 9. However there are 3× 3× 3 colourings as we can see from
the relevant entries of the colouring matrix for this knot (after simplification). The
second matrix below is obtained from the first by putting m = 2 and the third by
substituting the mod 3 values of the entries.[

−1 + 4m−m2 −2−m−m2 +m3

2− 7m 3 + 4m+ 2m2 −m4

] [
3 0
−12 3

] [
0 0
0 0

]
948. We look for colourings using the quandle given by m = 2, n = 3. For m = 2

the Alexander polynomial 1− 7m+ 11m2 − 7m3 +m4 is −9. Thus the number of
colourings computed from the Type I formula for 948 would be 3 × gcd(−9, 3) =
3 × 3 = 9. However there are 3 × 3 × 3 colourings, proceeding as in the previous
case: [

2−m 2− 8m+ 7m2 −m3

3 3− 10m+ 2m2 + 5m3 −m4

] [
0 6
3 15

] [
0 0
0 0

]
949. We look for colourings using the quandle given by m = 4, n = 5 (since for

m = 2, n = 3 this case is inconclusive). The Alexander polynomial 3− 6m+7m2−
6m3 + 3m4 for m = 4 is 475. Thus the number of colourings computed from the
Type I formula for 949 would be 5 × gcd(475, 5) = 5 × 5 = 25. However there are
5× 5× 5 colourings:[

−2−m+m2 3−m−m2 − 2m3

3− 2m −3 + 3m+m2

] [
10 −145
−5 25

] [
0 0
0 0

]
10157. For m = 2, n = 3 this case is also inconclusive. But for m = 6, n = 7

the Alexander polynomial 1 − 6m + 11m2 − 13m3 + 11m4 − 6m5 + m6 is 11809.
Then the number of colourings computed from the Type I formula for 10157 would
be 7× gcd(11809, 7) = 7× 7 = 49. However there are 7× 7× 7 colourings:[

4− 3m −7 + 12m− 9m2 + 6m3 −m4

−1 +m2 2− 3m+m2 −m3

] [
−14 −259
35 −196

] [
0 0
0 0

]
2

We have already shown that the knots 1069, 10101, 10115 and 10160 also have
Alexander polynomials that do not factorize. It is remarkable that they do not have
Type I colouring matrices according to our calculations (and according to [15]) but
somehow behave like Type I. Indeed the number of colourings calculated using a
battery of thousands of linear quandles coincides in each case with the number
obtained using the expression for Type I matrices. Presumably this means that a
general formula for the number of colourings reduces to the Type I formula in these
cases because of some specific feature.

7. Quandle Colourings when the Alexander Polynomials Differ

In this section we show that, given two knots with triangularizable colouring
matrices but different Alexander polynomials, a linear finite Alexander quandle can
be exhibited that distinguishes the two knots by the number of colourings. Note
that this holds for any two knots with colouring matrices that are equivalent to a
matrix of triangular form, which may be of a more general type than Type I or
Type II.
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First we note that there is an upper bound for the number of colourings of a
triangular colouring matrix using any quandle.

Proposition 7.1. Let K be a knot and A an N ×N triangular matrix, equivalent
to the colouring matrix of K, with diagonal entries aii(m), i = 1, ..., N , where
aNN = 0. Then the number of colourings of K using any linear finite Alexander
quandle Q = Zn[t, t

−1]/(t−m) satisfies

CQ(K) ≤ n×ΠN−1
i=1 gcd(aii(m), n).

Proof. We look for solutions in the order XN , XN−1, . . . . There are n solutions
in Zn of the equation 0XN = 0, namely XN = 0, . . . , n − 1. Fix one such value
XN = v. We now investigate for XN = v how many solutions there are for the other
variables. The penultimate equation is aN−1,N−1XN−1 − aN−1,N−1v = 0 mod n,
since aN−1,N = −aN−1,N−1. There are gcd(aN−1,N−1, n) solutions of this equation
in Zn. Therefore we have n×gcd(aN−1,N−1, n) solutions forXN andXN−1 (as in the
proof of Proposition 4.5). Now for each pair of values for XN = v1 and XN−1 = v2
the equation in row N − 2 becomes aN−2,N−2XN−2 + aN−2,N−1v2 + aN−2,Nv1 =
0 mod n. If any of these equations admits a solution then the number of solutions
in Zn will be gcd(aN−2,N−2, n). Therefore there are at most n×gcd(aN−1,N−1, n)×
gcd(aN−2,N−2, n) solutions for XN , XN−1 and XN−2. Proceeding in an analogous
fashion for the remaining rows, the result follows. 2

We now show that when n is a multiple of all the aii(m), i = 1, ..., N − 1, the
inequality becomes an equality.

Proposition 7.2. Let K be a knot and A an N×N triangular matrix, equivalent to
the colouring matrix of K, with diagonal entries aii(m), i = 1, ..., N , where aNN =
0. Given coprime 1 < m < n such that n is a multiple of ΠN−1

i=1 |aii(m)| (hence
aii(m) ̸= 0 for i = 1, ..., N−1), the number of colourings of K using the linear finite
Alexander quandle Q = Zn[t, t

−1]/(t −m) is CQ(K) = n × ΠN−1
i=1 gcd(aii(m), n) =

n× |AlexK(m)|.
Proof. First it is convenient to rewrite the equations AX = 0 mod n in terms of the
variables Yi = Xi−XN , for i = 1, ..., N − 1. The final equation remains unchanged
but every other equation aii(m)Xi + ...+ ai,N−1(m)XN−1 + aiN (m)XN = 0 can be
rewritten as aii(m)Yi + ... + ai,N−1(m)YN−1(m) = 0 since the entries in each row
of A add up to zero and therefore aiN (m) = −(aii(m) + ...+ ai,N−1(m)).

In the proof we use the fact that gcd(aii(m), n) = |aii(m)| since n = c ×
ΠN−1

i=1 |aii(m)|. We now show by induction that, given solutions coming from the
rows below the ith row, there are gcd(aii(m), n) = |aii(m)| solutions coming from
row i. It is convenient to write i = N − j and use j for induction. We show that,
for j = 1, . . . , N − 1, there are gcd(aN−j,N−j(m), n) solutions for YN−j and also

that each solution is a multiple of ΠN−j−1
k=1 |akk(m)|, the product of the moduli of

the diagonal entries in the rows above the ith = (N − j)th row.
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For j = 1 we have gcd(aN−1,N−1(m), n) solutions of YN−1 (recall the proof of

Proposition 4.5) . The solutions are k × n

gcd(aN−1,N−1(m),n)
= k × c×ΠN−1

i=1 |aii(m)|
|aN−1,N−1(m)| =

k × c×ΠN−2
i=1 |aii(m)| = k1 ×ΠN−2

i=1 |aii(m)|.
Now for j > 1 the equation is aN−j,N−j(m)YN−j + aN−j,N−j+1(m)YN−j+1 +

...+ aN−j,N−1(m)YN−1 = 0 mod n. Choosing a solution for each YN−j+1, ..., YN−1,
by the induction hypothesis we obtain aN−j,N−j(m)YN−j + aN−j,N−j+1(m) ×
kj−1Π

N−j
i=1 |aii(m)| + · · · + aN−j,N−1(m) × k1Π

N−2
i=1 |aii(m)| = 0 mod n where

ki, i = 1, . . . , j − 1 are integers. Since all terms except the first include the fac-
tor ΠN−j

i=1 |aii(m)| we can rearrange this equation as aN−j,N−j(m)YN−j + β(m) ×
ΠN−j

i=1 |aii(m)| = 0 mod n. Now we have that gcd(aN−j,N−j(m), n) = |aN−j,N−j(m)|
and the independent term β(m)×ΠN−j

i=1 |aii(m)| is divisible by aN−j,N−j(m) so there
are gcd(aN−j,N−j(m), n) = |aN−j,N−j(m)| solutions, as follows from the linear con-

gruence theorem. Moreover, aN−j,N−j(m)YN−j + β(m)×ΠN−j
i=1 |aii(m)| = 0 mod n

can be equivalently rewritten as

aN−j,N−j(m)
(
YN−j + β(m)×ΠN−j−1

i=1 |aii(m)|
)
= 0 mod n

One solution of this equation is YN−j = wj = −β(m)× ΠN−j−1
i=1 aii(m). Any other

solution is of the form wj + k′ n

gcd(aN−j,N−j(m),n)
. Now it is easy to check that both

wj and k′
c×ΠN−1

i=1 |aii(m)|
|aN−j,N−j(m)| are multiples of ΠN−j−1

i=1 |aii(m)| and therefore so is each

solution of the equation. This ends the proof by induction.
The final result follows easily: there are n solutions for XN and each solution

for Yi = Xi −XN yields a solution for Xi. Therefore there are n×ΠN−1
i=1 |aii(m)| =

n× |AlexK(m)| solutions. 2

The main result of this section follows.

Proposition 7.3. Let K1 and K2 be knots with different Alexander polynomials
AlexK1(m) ̸= AlexK2(m). Assume furthermore that their colouring matrices are
both equivalent to a triangular matrix with only zeros in the final row. Then there
is a linear finite Alexander quandle that distinguishes them by counting colourings.

Proof. Since the Alexander polynomials are different there will be an infinite number
of values of m such that |AlexK1(m)| ̸= |AlexK2(m)|. Let A denote the equivalent
N1 ×N1 triangular matrix for K1 and B denote the equivalent N2 ×N2 triangular
matrix for K2. There will also be an infinite number of values of m such that
additionally aii(m) ̸= 0, where aii(m), i = 1, ..., N1−1 are all but the final diagonal
entries of A and also such that bii(m) ̸= 0, where bii(m), i = 1, ..., N2−1 are all but
the final diagonal entries of B. Such values of m are those that are not solutions
of any of the equations aii(m) = 0, i = 1, ..., N1 − 1, bii(m) = 0, i = 1, ..., N2 − 1, or
AlexK1(m) = AlexK2(m) or AlexK1(m) = −AlexK2(m). We need a final condition
on m, namely that m is coprime with all aii(m), i = 1, ..., N1− 1 and all bii(m), i =
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1, ..., N2−1. To find such an m multiply (if needed) the diagonal entries by a power
of m so that they become polynomials without negative powers of m and a non-zero
constant term. An m that is coprime with the constant term of such a normalized
p(m) is coprime with p(m). There will also be an infinite number of such values
of m, for example the prime numbers that are coprime with the constant terms of
aii(m), i = 1, ..., N1 − 1 and bii(m), i = 1, ..., N2 − 1. This m is coprime with M ,
given by M = ΠN1−1

i=1 |aii(m)| ×ΠN2−1
i=1 |bii(m)| = |AlexK1(m)| × |AlexK2(m)|.

Choose n to be a multiple of M bigger than m and coprime with m. If M > m
then choose n = M . Otherwise multiply M by the first prime bigger than m. We
now have coprimem and n, with 1 < m < n, satisfying the conditions of proposition
7.2 for both knots K1 and K2. Therefore the number of colourings of K1 and K2

using the linear finite Alexander quandle Q = Zn[t, t
−1]/(t−m) satisfies

CQ(K1) = n× |AlexK1(m)| ̸= n× |AlexK2(m)| = CQ(K2). 2

We now illustrate the previous result with some examples.

Example 7.4. First we consider distinguishing two Type I knots K1 and K2

with different Alexander polynomials. Their triangularized matrices have one final
row of zeros, the Alexander polynomial in the penultimate diagonal entry and 1’s
in all other diagonal entries. We have to find an m such that a) |AlexK1(m)| ̸=
|AlexK2(m)|; b) all diagonal entries except the last are non-zero and c) m is coprime
with all diagonal entries.

In this case this simplifies to a) |AlexK1(m)| ̸= |AlexK2(m)|; b) AlexK1(m) ̸= 0
and AlexK2(m) ̸= 0 and c) m is coprime with AlexK1(m) and AlexK2(m).

Take for example knots K1 = 31 with Alexander polynomial 1 −m +m2 and
K2 = 41 with Alexander polynomial 1−3m+m2. Solving 1−m+m2 = 1−3m+m2

and 1 −m +m2 = −(1 − 3m +m2) we obtain m = 0 and m = 1. The equations
1 −m +m2 = 0 and 1 − 3m +m2 = 0 have no integer solutions. So any value of
m > 1 satisfies a) and b). Condition c) is fulfilled for m coprime with the constant
term of each Alexander polynomials that happens to be 1 in both cases. Therefore
any m > 1 will do. Choose m = 2. NowM = |AlexK1(2)|×|AlexK2(2)| = 3×1 = 3.
Since 3 > 2 we can choose n = 3 and by Proposition 7.3, the quandle with m = 2,
n = 3 should distinguish the two knots. Indeed, the number of colourings of 31 is
3 × gcd(3, 3) = 3 × 3 = 9 and the number of colourings of 41 is 3 × gcd(−1, 3) =
3× 1 = 3.

Example 7.5. Consider now knotsK1 = 10137 (Type I) with Alexander polynomial
1− 6m+ 11m2 − 6m3 +m4 and K2 = 10155 (Type II) with Alexander polynomial
1− 3m+ 5m2 − 7m3 + 5m4 − 3m5 +m6. The relevant entries of the triangularized
colouring matrix (2.1) for 10155 are the following:(

−1 + 2m−m2 +m3 0
0 −1 +m− 2m2 +m3

)
The equation 1−6m+11m2−6m3+m4 = 1−3m+5m2−7m3+5m4−3m5+m6

has two integer solutions, m = −1 and m = 0, the equation 1−6m+11m2−6m3+
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m4 = −(1− 3m+ 5m2 − 7m3 + 5m4 − 3m5 +m6) has one integer solution m = 1,
and the equations 1−6m+11m2−6m3+m4 = 0, α1(m) = −1+2m−m2+m3 = 0
and α2(m) = −1 +m − 2m2 +m3 = 0 have no integer solutions. We can choose
m = 2 because it is coprime with the constant terms of 1− 6m+11m2− 6m3+m4,
−1 + 2m −m2 +m3 and −1 +m − 2m2 +m3. Thus, by the proof of Proposition
7.3, we can choose the linear Alexander quandle with m = 2 and n = 7, since
M = |AlexK1(2)| × |AlexK2(2)| = 1× 7 = 7 > 2.

We now confirm that this quandle distinguishes the knots. The number of
colourings of knot 10137 for this quandle is CQ(K1) = 7× gcd(1, 7) = 7. For m = 2,
α1(2) = 7 and α2(2) = 1. Therefore CQ(K2) = 7 × gcd(1, 7) × gcd(0, gcd(7, 7)) =
7× 1× gcd(7, 7) = 7× 7 = 49.

Example 7.6. Finally, consider knots K1 = 818 (Type II) with Alexander poly-
nomial 1 − 5m + 10m2 − 13m3 + 10m4 − 5m5 +m6 and K2 = 937 (Type II) with
Alexander polynomial 2 − 11m + 19m2 − 11m3 + 2m4. The significant parts (2.1)
of their triangularized colouring matrices are the following:

818 :

(
−1 +m−m2 m−m2 +m3

0 1− 4m+ 5m2 − 4m3 +m4

)

937 :

(
1− 2m m+m2

0 −2 + 7m− 5m2 +m3

)
The equation |AlexK1(m)| = |AlexK2(m)| has m = −1 and m = 1 as its only

integer roots. The equations −1 + m − m2 = 0, 1 − 4m + 5m2 − 4m3 + m4 = 0
and 1− 2m = 0 have no integer roots. The equation −2 + 7m− 5m2 +m3 = 0 has
m = 2 as its only integer root. Therefore we may choose m = 3 which moreover
is coprime with both constant terms in the diagonal entries of both matrices. The
product M = |AlexK1(m)| × |AlexK2(m)| yields 49 × 5 = 245 > 3 so, according to
Proposition7.3 we can choose m = 3 and n = 245.

We now confirm that this quandle distinguishes the knots. For the knot 818,
α1(3) = −7, β1(3) = 21 and α2(3) = 7, so CQ(K1) = 245 × gcd(7, 245) ×
gcd(21 245

gcd(7,245)
, gcd(7, 245)) = 245× 7× gcd(21× 35, 7) = 245× 7× 7 = 12005.

On the other hand, for the knot 937, α1(3) = −5, β1(3) = 12 and α2(3) =
1, so CQ(K2) = 245 × gcd(1, 245) × gcd(12 245

gcd(1,245)
, gcd(−5, 245)) = 245 × 1 ×

gcd(12 245
1 , 5) = 245× 1× 5 = 1225.

8. Conclusions and Further Work

We have presented general expressions for the number of colourings of prime
knots using finite linear Alexander quandles when the colouring matrices can be
triangularized into one of two forms. We have obtained such a triangular form for
all but 12 knots with up to ten crossings. In 5 exceptional cases we prove that no
triangular form exists. We were also able to make statements, for knots with the
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same Alexander polynomial, about when the number of colourings distinguishes or
does not distinguish the knots.

For knots with different Alexander polynomials and colouring matrices that
are triangularizable, we show that they are distinguishable by colourings. We con-
jecture that the condition on the triangularizability of the colouring matrices can
be dropped and that knots with different Alexander polynomials can always be
distinguished by colourings. This will be investigated in future work.

Some of our results apply in complete generality, and it is clear that similar
methods to those we have used in concrete examples could be applied to knots
having more than ten crossings. A natural direction for future work is to try and
find general expressions for the number of solutions when the reduced colouring
matrix is non-triangular, or of a more general triangular type. This may also help to
elucidate why we were unable to prove that four knots with non-properly factorizable
Alexander polynomials have non-triangularizable colouring matrices.
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A Non-triangularized matrices

We were unable to triangularize the colouring matrices for the following 12 knots
where we display the relevant entries in the penultimate two rows and columns as in
section 3. Note that the colouring matrices of 941 and 10108 can be triangularized if
more general column operations are allowed yielding Type II and Type I matrices
respectively.

935 :

(
2−m −1−m
−3 −2 + 7m

)
938 :

(
−1 +m+m2 4− 4m

−5 + 7m 15− 19m+ 5m2

)
941 :

(
−1 +m2 4m− 3m2

−4 + 3m 13m− 12m2 + 3m3

)
947 :

(
−1 + 4m−m2 −2−m−m2 +m3

2− 7m 3 + 4m+ 2m2 −m4

)
948 :

(
2−m 2− 8m+ 7m2 −m3

3 3− 10m+ 2m2 + 5m3 −m4

)
949 :

(
−2−m+m2 3−m−m2 − 2m3

3− 2m −3 + 3m+m2

)
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1069 :

(
m−m2 −m3 1− 6m+ 10m2 − 2m3

1− 2m+ 2m2 −1 + 2m− 4m2 +m3

)
10101 :

(
3− 5m+ 3m2 −3 + 11m− 15m2 + 7m3

1−m+m3 −1 + 3m− 5m2 + 2m3

)
10108 :

(
−3m−m2 −3 + 8m− 10m2 + 12m3 − 10m4 + 6m5 − 2m6

−11m −11 + 33m− 47m2 + 57m3 − 51m4 + 34m5 − 14m6 + 2m7

)
10115 :

(
1−m+m2 −3 + 3m−m2

2m 1− 14m+ 17m2 − 8m3 +m4

)
10157 :

(
4− 3m −7 + 12m− 9m2 + 6m3 −m4

−1 +m2 2− 3m+m2 −m3

)
10160 :

(
−3m 1 +m+ 3m2 − 3m3 − 2m4 +m5

−2m+m2 1−m+ 3m2 − 4m3 +m4

)
B Type II colouring matrices

In this section we list the relevant entries of the 21 Type II matrices obtained from
colouring matrices using row operations and swapping of columns. Note that the colouring
matrices of knots 10106 and 10147 can be simplified (become Type I) if more general column
operations are allowed. The relevant entries of Type II matrices are :[

α1(m) β1(m)
0 α2(m)

]
Given a linear Alexander quandle Q = Zn[t, t

−1] / (t−m) the number of colourings is

CQ(K) = n× gcd(α2(m), n)× gcd(β1(m)
n

gcd(α2(m), n)
, gcd(α1(m), n)).

818 :

(
−1 +m−m2 m−m2 +m3

0 1− 4m+ 5m2 − 4m3 +m4

)
937 :

(
1− 2m m+m2

0 −2 + 7m− 5m2 +m3

)
940 :

(
1− 4m+ 5m2 − 4m3 +m4 0

0 −1 + 3m−m2

)
946 :

(
2−m −3

0 1− 2m

)
1061 :

(
−1 +m−m2 1 +m−m2

0 2− 3m+m2 − 3m3 + 2m4

)
1063 :

(
−1 +m−m2 2m2

0 −5 + 9m− 5m2

)
1065 :

(
−1 +m−m2 −1 +m+m2

0 2− 5m+ 7m2 − 5m3 + 2m4

)
1074 :

(
−1 + 2m 0

0 −4 + 8m− 7m2 + 2m3

)
1075 :

(
1− 4m+ 3m2 −m3 −1 + 2m

0 1− 3m+ 4m2 −m3

)
1098 :

(
−2 + 3m− 3m2 +m3 1−m+m2

0 −1 + 3m− 3m2 + 2m3

)
1099 :

(
1− 2m+ 3m2 − 2m3 +m4 0

0 1− 2m+ 3m2 − 2m3 +m4

)
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10103 :

(
−1 + 2m− 2m2 −1 + 2m−m2 +m3

0 2− 4m+ 5m2 − 3m3 +m4

)
10106 :

(
1−m+ 2m2 −m3 −m+ 2m2 − 2m3 +m4

0 −1 + 3m− 4m2 + 4m3 − 2m4 +m5

)
10122 :

(
1− 4m+ 5m2 − 4m3 +m4 −1 + 3m−m2

0 −2 + 3m− 2m2

)
10123 :

(
1− 3m+ 3m2 − 3m3 +m4 0

0 1− 3m+ 3m2 − 3m3 +m4

)
10140 :

(
1−m+m2 −2m2

0 1−m+m2

)
10142 :

(
−1 +m−m2 1 +m−m2

0 −2 +m+m2 +m3 − 2m4

)
10144 :

(
−1 +m−m2 2m

0 −3 + 7m− 3m2

)
10147 :

(
1− 2m −1 + 4m− 3m2

0 2− 3m+ 3m2 −m3

)
10155 :

(
−1 + 2m−m2 +m3 0

0 −1 +m− 2m2 +m3

)
10164 :

(
−1 +m−m2 3− 6m+ 4m2 −m3

0 1− 4m+ 7m2 − 4m3 +m4

)
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